
Multiplying and Factoring Matrices

Gilbert Strang

MIT

gs@math.mit.edu

I believe that the right way to understand matrix multiplication is columns times rows :

AB =







a1 . . .an













bT
1

...

bTn






= a1b

T

1
+ · · ·+ anb

T

n . (1)

Each column ak of an m by n matrix multiplies a row of an n by p matrix. The product akb
T

k

is an m by p matrix of rank one. The sum of those rank one matrices is AB.

All columns of akb
T

k are multiples of ak, all rows are multiples of bTk . The i, j entry of

this rank one matrix is aikbkj . The sum over k produces the i, j entry of AB in “the old way.”

Computing with numbers, I still find AB by rows times columns (inner products) !

The central ideas of matrix analysis are perfectly expressed as matrix factorizations :

A = LU A = QR S = QΛQT A = XΛY T A = UΣV T

The last three, with eigenvalues in Λ and singular values in Σ, are often seen as column-row

multiplications (a sum of outer products). The spectral theorem for S is a perfect example.

The first two are Gaussian elimination (LU ) and Gram-Schmidt orthogonalization (QR).

We aim to show that those are also clearly described using rank one matrices.

The spectral theorem S = QΛQT A real symmetric matrix S is diagonalized by its

orthonormal eigenvectors. The eigenvalues λi enter the diagonal matrix Λ. They multiply

the eigenvectors qi in the columns of Q. Then λiqi is a column of QΛ. The column-row

multiplication (QΛ)QT has the familiar form

S = λ1q1q
T

1
+ · · ·+ λnqnq

T

n . (2)

To see that S times qj produces λjqj , multiply every term λiqiq
T

i by qj . By orthogonality,

the only surviving term has i = j. That term is λjqj because qT

j qj = 1.

Of course the proof of the spectral theorem requires construction of the qj .

Elimination A = LU is the result of Gaussian elimination in the usual order, starting with

an invertible matrix A and ending with an upper triangular U . The key idea is that the matrix

L linking U to A contains the multipliers — the numbers ℓij that multiply row j when it is

subtracted from row i > j to produce Uij = 0.

The “magic” is that those separate steps do not interfere, when we undo elimination and

bring U back to A. The numbers ℓij fall into place in L—but that key fact can take patience

to verify in a classroom. Here we look for a different approach. The column-times-row idea

makes the steps of elimination transparently clear.
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Step 1 of elimination Row 1 of U is row 1 of A. Column 1 of L is column 1 of A,

divided by the first pivot a11 (so that ℓ11 = 1). Then the product ℓ1u
T

1
extends the first row

and column of A to a rank-one matrix. So the difference is a matrix A2 of size n− 1 bordered

by zeros in row 1 and column 1 :

Step 1 A = ℓ1u
T

1
+

[

0 0T

0 A2

]

. (3)

Step 2 acts in the same way on A2. The row uT

2
and the column ℓ2 will start with a single zero.

The essential point is that elimination on column 1 removed the matrix ℓ1u
T

1 from A.

A =

[

2 3
4 11

]

uT

1
=

[

2 3
]

ℓ1 =

[

1
2

]

ℓ1u
T

1
=

[

2 3
4 6

]

A− ℓ1u
T

1
=

[

0 0
0 5

]

= ℓ2u
T

2
=

[

0
1

][

0 5
]

. So LU =

[

1 0
2 1

][

2 3
0 5

]

.

When elimination reaches Ak, there are k − 1 zeros at the start of each row and column.

Those zeros in uk and ℓk produce an upper triangular matrix U and a lower triangular L.

The diagonal entries of U are the pivots (not zero). The diagonal entries of L are all 1’s.

The linear system Ax = b is reduced to two triangular systems governed by L and U :

Solve Lc = b and solve Ux = c. Then Ax = LUx = Lc = b.

Forward elimination leaves Ux = c, and back-substitution produces x. To assure nonzero

pivots, this LU decomposition requires every leading square submatrix of A (from its first k
rows and columns) to be invertible.

Gram-Schmidt orthogonalization A = QR The algorithm combines independent vectors

a1, . . . ,an to produce orthonormal vectors q1, . . . , qn. Subtract from a2 its component in the

direction of a1. Normalize at each step to unit vectors q :

q
1
=

a1

||a1||
=

a1

r11
q
2
=

a2 − (qT

1
a2)q1

||a2 − (qT

1
a2)q1||

=
a2 − r12q1

r22
.

As with elimination, this is clearer when we recover the original vectors a1 and a2 from the

final q1 and q2 :

a1 = r11q1 a2 = r12 q1 + r22 q2. (4)

In this order we see why R is triangular. At each step, q1 to qk span the same subspace as

a1 to ak. We can establish the Gram-Schmidt factorization A = QR = q1r
T

1
+ · · · + qnr

T

n

as follows :

The first column q1 is the first column a1 divided by its length r11

The first row rT

1
contains the inner products qT

1
ak.
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Subtracting the rank one matrix q1r
T
1 leaves a matrix A2 whose columns are all orthogonal

to q
1

:

A = q1r
T

1 +
[

0 A2

]

. (5)

This is the analog of equation (3) for elimination. There we had a row of zeros aboveA2. Here

we have columns of A2 orthogonal to q1. In two lines, this example reaches equation (5) :

A =

[

a1 a2

]

=

[

6 2
8 6

]

has r11 = ||a1|| = 10 and unit vector q1 =
a1

10

r12 = qT

1
a2 =

[

0.6 0.8
]

[

2
6

]

= 6 and A =

[

0.6
0.8

] [

10 6
]

+

[

0 −1.6
0 1.2

]

That last column has length r22 = 2 and A =

[

6 2
8 6

]

=

[

0.6 −0.8
0.8 0.6

] [

10 6
0 2

]

.

This product A = QR or QTA = R confirms that every rij = qT

i aj (row times column).

The mysterious matrix R just contains inner products of q’s and a’s. R is triangular because

qi does not involve aj for j>i. Gram-Schmidt uses only a1, . . . ,ai to construct qi.

The next vector q2 is the first column of A2 divided by its length. The next vector rT
2

contains (after a first zero) the inner products of q2 with columns of A2 :

A = q1r
T

1 + q2r
T

2 +
[

0 0 A3

]

. (6)

All columns of A3 are orthogonal to q
1

and q
2
.

After n steps this is A = QR. Only the order of the orthogonalization steps has been

modified—by subtracting components (projections) from the columns of A as soon as each

new qk direction has been found.

Now come the last two factorizations of A.

Eigenvalue Decomposition A = XΛX−1 = XΛY T

The effect of n independent eigenvectors x1, . . . ,xn is to diagonalize the matrix A. Those

“right eigenvectors” are the columns of X . Column by column, we see AX = XΛ. Then

Λ = X−1AX is the diagonal matrix of eigenvalues, as usual.

To keep the balance between columns and rows, recognize that the rows of X−1 are the

“left eigenvectors” of A. This is expressed by X−1A = ΛX−1. Writing yT

1 , . . . ,y
T

n for the

rows of X−1 we have yT

j A = λjy
T

j . So the diagonalization A = XΛX−1 actually has the

more symmetric form A = XΛY T :

Right and left eigenvectors A = XΛY T = λ1x1y
T

1 + · · ·+ λnxny
T

n (7)

Notice that these left eigenvectors yT

i are normalized by Y TX = X−1X = I . This re-

quires yT

j xj = 1 and confirms the biorthogonalityyT

i xj = δij of the two sets of eigenvectors.

A symmetric matrix has yj = xj = qj and orthonormal eigenvectors. Then S = QΛQT.
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Singular Value Decomposition A = UΣV T By comparing with the diagonalization

A = XΛX−1 = XΛY T, we see the parallels between a right-left eigenvector decomposition

(for a diagonalizable matrix) and a right-left singular value decomposition A = UΣV T (for

any matrix) :

The SVD with singular vectors A = UΣV T = σ1u1v
T

1 + · · ·+ σrurv
T

r . (8)

For every matrixA, the right singular vectors in V are orthonormal and the left singular vectors

uj = Avj/||Avj || are orthonormal. Those v’s and u’s are eigenvectors of ATA and AAT.

ATAvj = σ2

jvj and (AAT)Avj = σ2

jAvj and (AAT)uj = σ2

juj . (9)

These matrices have the same nonzero eigenvalues σ2

1
, . . . σ2

r . The ranks of A and ATA and

AAT are r. When the singular values are in decreasing order σ1 ≥ σ2 ≥ . . . ≥ σr > 0,

the most important piece of A is σ1u1v
T

1 :

||A|| = σ1 and ||A− σ1u1v
T

1 || = σ2. (10)

The rank one matrix closest to A is σ1u1v
T

1
. The difference A − σ1u1v

T

1
will have singular

values σ2 ≥ σ3 ≥ . . . ≥ σr . At every step—not only this first step—the SVD produces the

matrix Ak = σ1u1v
T

1
+ · · ·+ σkukv

T

k of rank k that is closest to the original A :

(Eckart-Young) ||A− B|| ≥ ||A− Ak|| = σk+1 if B has rank k. (11)

Thus the SVD produces the rank one pieces σiuiv
T

i in order of importance. This is a central

result in data science. We are measuring all these matrices by their spectral norms :

||A|| = maximum of ||Ax|| = maximum of uTAv with ||x|| = ||u|| = ||v|| = 1.

In Principal Component Analysis, the leading singular vectors are “principal components”.

In statistics, each row of A is centered by subtracting its mean value from its entries. Then

S = AAT is a sample covariance matrix. Its top eigenvector u1 represents the combination of

rows of S with the greatest variance.

Note. For very large data matrices, the SVD is too expensive to compute. An approximation

takes its place. That approximation often uses the inexpensive steps of elimination ! Now

elimination may begin with the largest entry of A, and not necessarily with a11.

Geometrically, the singular values in Σ stretch the unit circle ||x|| = 1 into an ellipse. The

factorization UΣV T = (orthogonal) times (diagonal) times (orthogonal) expresses any matrix

(roughly speaking) as a rotation times a stretching times a rotation. This has become central to

numerical linear algebra.

It may surprise the reader (as it did the author) that the columns of X in A = XΛY T

are right eigenvectors, while the columns of U in A = UΣV T are called left singular vectors.

Perhaps this just confirms that mathematics is a human and fallible (and wonderful) joint

enterprise of us all.
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Figure 1: U and V are rotations and possible reflections. Σ stretches circle to ellipse.

Factorizations can fail ! Of the five principal factorizations, only two are guaranteed.

Every symmetric matrix has the form S = QΛQT and every matrix has the form A = UΣV T.

The cases of failure are important too (or adjustment more than failure). A = LU now requires

an “echelon form E” and diagonalization needs a “Jordan form J”. Matrix multiplication is

still columns times rows.

Elimination to row reduced echelon form A = CE = (m by r)(r by n).

The rank of all three matrices is r. E normally comes from operations on the rows of A. Then

it may have zero rows. If we work instead with columns of A, the factors C and E have direct

meaning.

C contains r independent columns of A (a basis for the column space of A).

E expresses each column of A as a combination of the basic columns in C.

To choose those independent columns, work from left to right (j = 1 to j = n).

A column of A is included in C when it is not a combination of preceding columns.

The r corresponding columns of E contain the r by r identity matrix.

A column of A is excluded from C when it is a combination of preceding columns of C.

The corresponding column of E contains the coefficients in that combination.

Example A =





1 4 7
2 5 8
3 6 9



 =





1 4
2 5
3 6





[

1 0 −1
0 1 2

]

= CE

The entries of E are uniquely determined because C has independent columns.
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The remarkable point is that this E coincides with the row reduced echelon form of

A—except that zero rows are here discarded. Each “1” from the identity matrix inside E is the

first nonzero in that row of E. Those 1’s appear in descending order in I and E. The key to

the rest of E is this :

The nullspace of E is the nullspace of A = CE. (C has independent columns.)

Therefore the row space of E is the row space of A.

Then our E must be the row reduced echelon form without its zero rows.

The nullspace and row space of any matrix are orthogonal complements. So the column con-

struction and the row construction must find the same E.

Gram-Schmidt echelon form A = QU = (m by r)(r by n).

When the columns of A are linearly dependent (r < n), Gram-Schmidt breaks down. Only

r orthonormal columns qj are combinations of columns of A. Those qj are combinations of

the independent columns in C above, because Gram-Schmidt also works left to right. Then

A = CE is the same as Gram-Schmidt C = QR multiplied by E :

A = CE = (QR)E = Q(RE) = QU. (12)

Q has r orthonormal columns : QTQ = I . The upper triangular U = RE combines an

r by r invertible triangular matrix U from Gram-Schmidt and the r by n echelon matrix E
from elimination. The nullspaces of U and E and A are all the same, and A = QU .

The Jordan form A = GJG−1 = GJHT of a square matrix

Now it is not the columns of A but its eigenvectors that fail to span Rn. We need to supplement

the eigenvectors by “generalized eigenvectors” :

Agj = λjgj is supplemented as needed by Agk = λkgk + gk−1

The former puts λj on the diagonal of J . The latter produces also a “1” on the superdiagonal.

The construction of the Jordan form J is an elegant mess (and I believe that a beginning linear

algebra class has more important things to do : the five factorizations).

The only novelty is to see left generalized eigenvectors hT

i when we invert G. Start from a

2 by 2 Jordan block :

AG = A

[

g1 g2

]

=

[

λg1 λg2 + g1

]

=

[

g1 g2

] [

λ 1
0 λ

]

= GJ . (13)

Then AG = GJ gives G−1A = JG−1. Write hT for the rows of G−1 (the left generalized

eigenvectors) :
[

hT

1

hT

2

]

A =

[

λ 1

0 λ

][

hT

1

hT

2

]

is hT

1
A = λhT

1
+ hT

2
and hT

2
A = λhT

2
. (14)

In the same way that A = XΛX−1 became A = XΛY T, the Jordan decomposition

A = GJG−1 has become A = GJHT. We have rows times columns :

A = λg1h
T

1 + (λg2 + g1)h
T

2 = g1(λh
T

1 + hT

2 ) + λg2h
T

2 . (15)
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Summary The first lines of this paper connect inner and outer products. Those are “rows

times columns” and “columns times rows” : Level 1 multiplication and Level 3 multiplication.

Level 1 Inner product aTb : row times column =
[

a1 . . . an
]







b1
...

bn






= scalar

Level 2 Linear combination Ab :






a1 . . . an













b1
...

bn






=

∑

ajbj = vector

Level 3 Outer product abT : column times row







a1
...

an







[

b1 . . . bn
]

= matrix

The product AB of n by n matrices can be computed at every level, always with the same

n3 multiplications :

Level 1 (n2 inner products) (n multiplications each) = n3

Level 2 (n columns Ab) (n2 multiplications each) = n3

Level 3 (n outer products) (n2 multiplications each) = n3

These correspond to the three levels of Basic Linear Algebra Subroutines (BLAS). Those are

the core operations in LAPACK at the center of computational linear algebra [1]. Our factor-

izations are produced by four of the most frequently used MATLAB commands : lu, gr, eig,

and svd

Finally we verify the most important property of matrix multiplication.

The associative law is (AB)C = A(BC)
Multiplying columns times rows satisfies this fundamental law. The matrices A,B,C are

m by n, n by p, and p by q. When n = p = 1 and B is a scalar bjk, the laws of arithmetic give

two equal matrices of rank one :

(aj bjk) c
T

k = aj(bjk c
T

k ). (16)

The full law (AB)C = A(BC) will follow from the agreement of double sums :

p
∑

k=1

n
∑

j=1

(aj bjk) c
T

k =
n
∑

j=1

p
∑

k=1

aj(bjk c
T

k ). (17)

We are just adding the same np terms. After the inner sum on each side, this becomes
p

∑

k=1

(AB)k c
T

k =

n
∑

j=1

aj (BC)Tj . (18)

With another column-row multiplication this is (AB)C = A(BC). Parentheses are not needed

in QΛQT and XΛY T and UΣV T.
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