º£²ó¤Ï¡¤¥é¥ó¥À¥à¤µ¤¬¤â¤ÄÀ¼Á¤Ë¤Ä¤¤¤Æ¤Þ¤¿¤Þ¤¿°ã¤¦³ÑÅÙ¤«¤éÄ´¤Ù¤Æ¤ß¤è¤¦.
¤Ç¡¤º£²ó¤ÏÍð¿ô¤Ç¸½¼ÂÀ¤³¦¤ò¥·¥ß¥å¥ì¡¼¥È¤·¤Æ¤ß¤ë»î¤ß¤ò¹Ô¤Ã¤Æ¤ß¤ë.
¤³¤¦¤·¤¿»î¤ß¤ò¤è¤êÊ£»¨¤ËÀºÌ©¤Ë¹Ô¤¨¤Ð¡¤¤½¤ì¤Ï¼ÂÍÑ¥ì¥Ù¥ë¤Ë¤â㤹¤ë¤À¤í¤¦¤·¡¤¤½¤Î²áÄø¤Ç¿ô³Ø¤ä¸½¼ÂÀ¤³¦¤Ø¤Î¿·¤·¤¤Ã諤âÆÀ¤é¤ì¤ë¤À¤í¤¦.
¤³¤³¤Ç¤Ï¿ì¤Ãʧ¤¤¤ÎÀéÄ»Â¤ÎµóÆ°¤òÍð¿ô¤òÍѤ¤¤Æ¥·¥ß¥å¥ì¡¼¥È¤·¤Æ¤ß¤è¤¦.
¤Þ¤º¡¤¤³¤Î¿ì¤Ãʧ¤¤¤Ï¤¢¤Þ¤ê¤Ë¿ì¤Ã¤Æ¤·¤Þ¤Ã¤¿¤¿¤á¡¤°ìʬ¤Ë°ìÊ⤷¤«¿Ê¤á¤Ê¤¤.
¤·¤«¤â¡¤Á°¤«¸å¤í¤Ë¤·¤«¿Ê¤á¤Ê¤¤¾õÂÖ¤À¡¤ ¤È¤¤¤¦ºÇ¤â¥·¥ó¥×¥ë¤Ê¾ì¹ç¤ò¹Í¤¨¤è¤¦.
# ¤Ä¤Þ¤ê¡¤¡Ö¼¡¡×¤Î²ÄǽÀ¤¬ÆóÄ̤ꤷ¤«¤Ê¤¤.
¤½¤·¤Æ¡¤¤µ¤é¤Ë¥·¥ó¥×¥ë¤Ë¡¤Á°¤Ë¹Ô¤¯³ÎΨ¤¬ 1/2, ¸å¤í¤Ë¹Ô¤¯³ÎΨ¤¬ 1/2 ¤À¡¤¤È¤·¤è¤¦.
¤¹¤ë¤È¡¤n ʬ¸å¤Ë¤Ï¤³¤Î¿ì¤Ãʧ¤¤¤Ï¥¹¥¿¡¼¥ÈÃÏÅÀ¤«¤é¤É¤ì¤¯¤é¤¤Î¥¤ì¤¿¾ì½ê¤Ë¤¤¤ë¤À¤í¤¦¤«.
¤Þ¤º¤Ï Mathematica ¤Ç»î¤·¤Æ¤ß¤è¤¦.
In[1]:= Needs["Graphics`"]; ¢« ɬÍפˤʤë¤Î¤Ç¡¤°ìÈֺǽé¤Ë˺¤ì¤Ê¤¤¤è¤¦¤Ë¤ä¤Ã¤Æ¤ª¤¯. In[2]:= Needs["Statistics`"]; ¢« ¤³¤ì¤âɬÍפˤʤë. In[3]:= Random[Integer] ¢« ³Î¤«¤³¤ì¤Ç 0 ¤« 1 ¤¬³ÎΨ 1/2 ¤Ç½Ð¤Æ¤¯¤ë. Out[3]= 1 In[4]:= Table[Random[Integer], {100}] ¢« »î¤·¤Ë 100 ²ó¤ä¤Ã¤Æ¤ß¤ë. Out[4]= {1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1} In[5]:= % /. 0 -> -1 ¢« ¡ÖÁ°¤Ø¹Ô¤¯ = +1¡×¡Ö¸å¤í¤Ø¹Ô¤¯ = -1¡×¤È¤·¤Æ¤ª¤¯¤È¤¤¤í¤¤¤íÅԹ礬Îɤµ¤½¤¦¤Ê¤Î¤Ç¡¤ 0 ¤ò -1 ¤ËÃÖ´¹¤·¤Æ¤ª¤¯. Out[5]= {1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1} ¢« ¤³¤ì¤¬¡Ö¿ì¤Ãʧ¤¤¤¬100ʬ¤Î´Ö¤ËÁ°¤Ø¹Ô¤Ã¤¿¤«¡¤¸å¤í¤Ø¹Ô¤Ã¤¿¤«¤Î¥ê¥¹¥È(^-^)¡× In[6]:= FoldList[Plus, 0, %] ¢« º¸¤«¤é½ç¤Ë 0 ¤Ë¤·¤Æ¤¤¤¯¤È¡Ä Out[6]= {0, 1, 0, -1, -2, -1, 0, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 10, 11, 10, 11, 12, 13, 12, 11, 12, 11, 12, 13, 14, 13, 14, 13, 12, 11, 12, 11, 12, 13, 14, 15, 14, 15, 14, 15, 14, 15, 14, 13, 14, 13, 14, 13, 12, 11, 10, 9, 10, 9, 10, 11, 12, 11, 10, 9, 8, 9, 8, 7, 6, 5, 6, 5, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 4, 3, 4, 3, 2, 1, 0, 1, 0, -1, -2, -1, -2, -3, -4, -3, -2} In[7]:= Delete[ %, 1] ¢« ¾å¤Î·ë²Ì¤ÎºÇ½é¤Î 0 ¤Ï°ÕÌ£¤Ê¤¤¤Î¤Çºï¤ë. Out[7]= {1, 0, -1, -2, -1, 0, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 10, 11, 10, 11, 12, 13, 12, 11, 12, 11, 12, 13, 14, 13, 14, 13, 12, 11, 12, 11, 12, 13, 14, 15, 14, 15, 14, 15, 14, 15, 14, 13, 14, 13, 14, 13, 12, 11, 10, 9, 10, 9, 10, 11, 12, 11, 10, 9, 8, 9, 8, 7, 6, 5, 6, 5, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 4, 3, 4, 3, 2, 1, 0, 1, 0, -1, -2, -1, -2, -3, -4, -3, -2} In[8]:= ListPlot[%, PlotJoined -> True]¢« ²£¼´=»þ´Ö¡¤½Ä¼´=¥¹¥¿¡¼¥ÈÃÏÅÀ¤«¤é¤ÎÁ°¿Êµ÷Î¥(^-^)
¤¿¤À¤·¡¤ÅÓÃæ¤Ç»È¤Ã¤¿ Mathematica ¤Î¿·¤·¤¤´Ø¿ô¤Ï¡¤°Ê²¼¤ÎÄ̤ê¤Ç¤¢¤ë.
¡ü ÊÑ´¹µ¬Â§¤ÎŬÍÑ ¡Ä ¼° /. ÊÑ´¹¥ë¡¼¥ë
¢ª ÊÑ´¹¥ë¡¼¥ë¤Ï¡¤a ¤ò b ¤ËÊÑ´¹¤·¤¿¤¤¤È¤¡¤a -> b ¤È½ñ¤¯.
¢ª Î㤨¤Ð¡¤x + y /. x -> 3 ¤È¤¹¤ë¤È¡¤Åú¤¨¤Ï 3 + y ¤Ë¤Ê¤ë.
¡ü ´Ø¿ô¤ò°ú¿ô¤Ë·«¤êÊÖ¤·¤ÆÅ¬ÍѤ·¤¿·ë²Ì¤òÊÂ¤Ù¤ë ¡Ä FoldList[´Ø¿ô, °ú¿ô, ¥ê¥¹¥È]
¢ª Nest ¤Ë»÷¤Æ¤¤¤ë¤¬¡¤´Ø¿ô¤ÎÂèÆó°ú¿ô¤¬¥ê¥¹¥È¤ÎÍ×ÁǤˤʤ롥
¢ª ưºî¼«ÂÎ¤Ï Fold ¤ÈƱ¤¸¤À¤¬¡¤·×»»ÍúÎò¤¬Á´Éô¥ê¥¹¥È¤È¤·¤Æ½ÐÎϤµ¤ì¤ëÅÀ¤¬°Û¤Ê¤ë.
Nest ¤È NestList ¤È¤Î´Ø·¸¤ÈƱ¤¸.
¢ª Î㤨¤Ð¡¤FoldList[f, x, {a, b, c}] ¤Ï
{x, f[x,a], f[f[x,a],b], f[f[f[x,a],b],c]}
¤Ë¤Ê¤ë.
Î㤨¤Ð¡¤((1.32)0.7)1.2 ¤ò·×»»¤¹¤ë¤Ë¤Ï°Ê²¼¤Î¤è¤¦¤Ë¤¹¤ë.
In[1]:= FoldList[Power, 1.3, {2, 0.7, 1.2}] Out[1]= {1.3, 1.69, 1.44385, 1.55391}
¡ü ¥ê¥¹¥È ¤ÎÍ×ÁǤòºï¤ë ¡Ä Delete[¥ê¥¹¥È¡¤Í×ÁÇÈÖ¹æ]
¢ª Delete[{a, b, c, d}, 3] ¤È¤¹¤ë¤ÈÅú¤¨¤Ï {a, b, d} ¤È¤Ê¤ë.
¤µ¤Æ¡¤¤³¤ì¤Î·«¤êÊÖ¤·¤òËè²óÆþÎϤ¹¤ë¤Î¤ÏÌÌÅݤʤΤǡ¤½Ì¤á¤Æ´Ø¿ô¤Ë¤·¤Æ¤·¤Þ¤ª¤¦.
¿ì¤Ãʧ¤¤¤ÎÁ°¸åÊ⤤½¤Î¤â¤Î¤Î¥ê¥¹¥È¤ò½ÐÎϤ¹¤ë´Ø¿ô¤ò RW[Á´Êâ¿ô],
¤½¤Î·ë²Ì¤Ë¤è¤Ã¤Æ¡¤n ÊâÌܤǥ¹¥¿¡¼¥ÈÃÏÅÀ¤«¤é¤É¤ì¤¯¤é¤¤Á°¿Ê¤·¤Æ¤¤¤ë¤«¤Î¥ê¥¹¥È¤ò½ÐÎϤ¹¤ë´Ø¿ô¤ò RWpath[Á´Êâ¿ô],
¤Ä¤¤¤Ç¤Ë¤½¤Î·ë²Ì¤ò¥×¥í¥Ã¥È¤¹¤ë´Ø¿ô¤ò RWplot[Á´Êâ¿ô]
¤È¤·¤Æºî¤Ã¤Æ¤ß¤ë.
In[9]:= RW[num_] := Table[Random[Integer], {num}] /. 0 -> -1 In[10]:= RW[100] ¢« »î¤·¤Ë¿ì¤Ãʧ¤¤¿ÆÉã¤Ë 100ÊâÊ⤫¤»¤Æ¤ß¤ë. Out[10]= {-1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1} In[11]:= RWpath[num_] := Delete[FoldList[Plus, 0, RW[num]] , 1] In[12]:= RWpath[100] ¢« ¤ä¤Ï¤êƱÍͤ˻¤Æ¤ß¤ë. Out[11]= ¡Äά¡Ä In[13]:= RWplot[num_] := ListPlot[RWpath[num], PlotJoined -> True] In[14]:= RWplot[100] ¢« ¤ä¤Ï¤êƱÍͤ˻¤Æ¤ß¤ë. Out[14]= ¡Äά¡Ä
¤µ¤Æ¡¤¤³¤ì¤Ç¿ì¤Ãʧ¤¤¿ÆÉã¤Ë¤¤¤¯¤é¤Ç¤âÊ⤫¤»¤Æ¡¤¤½¤Î²áÄø¤ò¥°¥é¥Õ¤Ç¸«¤ë
¤³¤È¤¬´Êñ¤Ë¤Ç¤¤ë¤è¤¦¤Ë¤Ê¤Ã¤¿.
¤Ç¤Ï¡¤¤½¤Î·ë²Ì¤Ë¤Ä¤¤¤Æ¤Ê¤Ë¤«¤³¤Î»þÅÀ¤ÇͽÁۤǤ¤ë¤«?
²¿ÅÙ¤â¤ä¤Ã¤¿¤ê¡¤Á´Êâ¿ô¤òÊѤ¨¤¿¤ê¤·¤Æ¡¤²¿¤«Ã諤¬ÆÀ¤é¤ì¤Ê¤¤¤«»î¤·¤Æ¤ß¤è.
Î㤨¤Ð¡¤Æ±»þ¤Ë¿¤¯¤Î¿ÆÉã¤ËÊ⤫¤»¤Æ¡¤¤½¤Î·ÐÏ©¤ò½Å¤Í¤ÆÉ½¼¨¤¹¤ë¤È¤¤¤¦¡¤
¼¡¤Î¤è¤¦¤Ê¥°¥é¥Õ¤òÆÀ¤ë¤Ë¤Ï¤É¤¦¤ä¤Ã¤Æ¤ß¤¿¤é¤è¤¤¤«.
¢ª (¼ø¶ÈÃæ¤Î²ÝÂê)
¢« ²£¼´=»þ´Ö¡¤ ½Ä¼´= ³Æ¡¹°ã¤¦¿ÆÉã¤Î°ÌÃÖ(^-^)
¤µ¤Æ¡¤¤Þ¤º¤Ïï¤Ç¤â¤ï¤«¤ë´Êñ¤ÊͽÁÛ¤ò·Á¤Ë¤·¤Æ¤ß¤è¤¦.
¢£ ²¾Àâ 1
n Êâ¸å¤Î¿ì¤Ãʧ¤¤¿ÆÉã¤ÎÁ°¿Ê°ÌÃ֤ΡÖÊ¿¶ÑÃ͡פϥ¼¥í¤Ç¤¢¤ë.
¤³¤ì¤Ï¡¤¡ÖÁ°¿Ê¡×¤È¡Ö¸åÂà¡×¤Î³ÎΨ¤¬Á´¤¯Åù¤·¤¤¤Î¤À¤«¤é¡¤¤É¤Á¤é¤Ø¿Ê¤ó¤Ç¤¤¤ë¤È¹Í¤¨¤ë¤Î¤âÉÔ¹çÍý¤À¡¤¤È¤¤¤¦Ä¾´¶Åª¤Ê¹Í¤¨Êý¤ÇÍý²ò¤Ç¤¤ë.
¤µ¤Æ¡¤¤³¤ì¤ò Mathematica ¤Ç³Îǧ¤·¤Æ¤ß¤è¤¦.
RWpath[n][[-1]] (Last[ RWpath[n] ] ¤È½ñ¤¤¤Æ¤âƱ¤¸)
¤Ç¿ì¤Ãʧ¤¤¤Ë¡Ö°ì²ó¡× n ÊâÊ⤫¤»¤¿»þ¤Î°ÌÃÖ¤¬µá¤Þ¤ë¤Î¤Ç¡¤
¤½¤ì¤ò m ²ó¤ä¤é¤»¤Æ¤ß¤è¤¦.
In[15]:= RWmulti[num_, m_] := Table[ RWpath[num][[-1]], {m} ] ¢« ¿ÆÉã¤ò num ÊâÊ⤫¤»¤ë¡¤¤È¤¤¤¦¤Î¤ò m ²ó¹Ô¤¦. ¤½¤Î»þ¤ÎºÇ¸å¤Î°ÌÃÖ¤ò³Æ¡¹½ÐÎϤ¹¤ë. In[16]:= RWmulti[100, 5] ¢« 100ÊâÊ⤫¤»¤ë¡¤¤Î¤ò 5²ó ¤¿¤á¤·¤Ë¤ä¤Ã¤Æ¤ß¤¿. Out[16]= {-2, -14, -16, -4, 10} ¢« ¤³¤ó¤Ê´¶¤¸¤À.
¤µ¤Æ¡¤Ê¿¶ÑÃÍ¤Ï Mathematica ¤Ç
¡ü Ê¿¶ÑÃÍ ¡Ä Mean[¿ôÃͤΥꥹ¥È]
¢ª Á´Éô¤·¤Æ¸Ä¿ô¤Ç³ä¤ë¤À¤±.
¢ª »öÁ°¤Ë Needs["Statistics`"]; ¤¬É¬Í×¡Ä ¤Ê¤¤¤«¤â¤·¤ì¤Ê¤¤.
(¥Þ¥Ë¥å¥¢¥ë¤Ë¡Ö¤«¤â¤·¤ì¤Ê¤¤¡×¤È½ñ¤¤¤Æ¤¢¤ë(^-^))
¤Þ¡¤°ì±þ¤ä¤Ã¤Æ¤ª¤±.
¤Ç´Êñ¤Ë·×»»¤Ç¤¤ë¤Î¤Ç¤½¤ì¤ò»È¤Ã¤Æ¤ß¤è¤¦.
In[17]:= RWmulti[100, 500]; ¢« 100ÊâÊ⤫¤»¤ë¡¤¤Î¤ò 500 ²ó. ËÜÅö¤Ë¤ä¤é¤»¤¿¤é¡¤´°Î»¤¹¤ëÁ°¤Ë¿²¤Æ¤·¤Þ¤¤¤½¤¦¤À. In[18]:= Mean[ %17 ] // N Out[18]= -0.176 ¢« ¤Õ¡Á¤à¡¤¤Þ¤¢ 0 ¤Ë¶á¤¤¡¤¤È¤¤¤¨¤Ê¤¯¤â¤Ê¤¤¤Ê. In[19]:= Mean[ RWmulti[100, 1000] ] // N ¢« 100ÊâÊ⤫¤»¤ë¡¤¤Î¤ò 1000 ²ó¤Î¾ì¹ç¤ÎÊ¿¶Ñ¤Ï¡Ä Out[19]= 0.04 ¢« ¤Õ¡Á¤à¡¤0 ¤Ë¶á¤¯¤Ê¤Ã¤¿¤è¤¦¤Êµ¤¤¬¤¹¤ë¤Ê.
¤µ¤Æ¡¤ËÜÅö¤Ë²¾Àâ 1 ¤ÏÀµ¤·¤¤¤«¤É¤¦¤«¡¤Êâ¿ô¤äÊ⤫¤»¤ë²ó¿ô
(¥é¥ó¥À¥à¤Ê¼Â¸³¤ò»î¤¹²ó¿ô¤ò»î¹Ô²ó¿ô¤È¤¤¤¦.
¾å¤ÎÎã¤À¤È¡¤500 ¤È¤« 1000¡¤¤È¤¤¤¦Éôʬ¤¬ÁêÅö¤¹¤ë)
¤òÊѤ¨¤Æ¡¤Ä´¤Ù¤Æ¤ß¤è.
¢ª (¼ø¶ÈÃæ¤Î²ÝÂê)
¢¢ ¥ì¥Ý¡¼¥È²ÝÂê 1
²¾Àâ 1 ¤ò¾ÚÌÀ¤»¤è.
(n Êâ¸å¤Î°ÌÃÖ¤ÎÊ¿¶ÑÃͤò loc(n) ¤È½ñ¤¡¤loc(n) ¤¬Ê¬¤«¤Ã¤Æ¤¤¤ë¤È²¾Äꤹ¤ë¤Èloc(n+1) ¤Ï¤É¤¦·×»»¤µ¤ì¤ë¤«¡¤¤ò¹Í¤¨¤ì¤Ð´Êñ )
¤µ¤Æ¡¤Ê¿¶ÑÃͤˤĤ¤¤Æ¤Ï²¾Àâ 1 ¤Ç¥Á¥§¥Ã¥¯¤¹¤ë¤â¤Î¤È¤·¤Æ¡¤Â¾¤Î¤³¤È¤ò¹Í¤¨¤è¤¦.
¿ÆÉã¤Î¼è¤ê¥°¥é¥Õ¤ò¸«¤Æ¤¤¤ë¤È¡¤¤±¤·¤Æ°ÌÃÖ 0 ¶á¤¯¤Ë¤À¤±¤º¤Ã¤È¤¤¤ë¤Î¤Ç¤Ï¤Ê¤¯¡¤
·ë¹½±ó¤¯¤Þ¤Ç¤µ¤Þ¤è¤¤Ê⤤¤Æ¤¤¤¯¤³¤È¤¬¸«¤ÆÊ¬¤«¤ë.
¤³¤Î¤µ¤Þ¤è¤¤Ê⤤ΡÖÄøÅ١פòÃΤë¤Ë¤Ï¤É¤¦¤·¤¿¤é¤è¤¤¤À¤í¤¦¤«?
Ê¿¶Ñ¤Ç¤Ï¡¤Ê⤤¤Æ¤¤¤Ã¤¿¸ú²Ì¤¬¥×¥é¥¹¥Þ¥¤¥Ê¥¹¤ÇÂǤÁ¾Ã¤µ¤ì¤Æ¤³¤¦¤·¤¿ÄøÅÙ¤¬¸«¤¨¤Ê¤¯¤Ê¤Ã¤Æ¤·¤Þ¤¦.
¤½¤³¤Ç¡¤n Êâ¸å¤Î°ÌÃ֤ΡÖÀäÂÐÃ͡פËÁêÅö¤¹¤ëÎ̤ò»È¤Ã¤Æ¤ß¤è¤¦.
¤³¤ì¤Ê¤é¥×¥é¥¹¥Þ¥¤¥Ê¥¹¤ÇÂǤÁ¾Ã¤µ¤ì¤ë¤³¤È¤Ï¤Ê¤¤.
¿ô³Ø¤Ë¤Ï¤³¤¦¤·¤¿»þ¤ËÊØÍø¤ÊÎ̤¬¤¢¤ë.
¢£ ʬ»¶
³ÎΨŪ¤ÊÃÍ(Î㤨¤Ð¡¤¿ÆÉã¤Î n Êâ¸å¤Î°ÌÃÖ)¤Îʬ»¶¤È¤Ï¡¤
(ÃÍ - Ê¿¶ÑÃÍ)2
¤ÎÊ¿¶ÑÃͤΤ³¤È¤Ç¤¢¤ë.
¢ª Íפ¹¤ë¤Ë¡¤Ê¿¶Ñ¤«¤é¤Î¥º¥ì¤ÎÆó¾è¤¬¤À¤¤¤¿¤¤¤ï¤«¤ë¤È¤¤¤¦¤³¤È¤À.
¢£ ɸ½àÊк¹
³ÎΨŪ¤ÊÃͤÎɸ½àÊк¹¤È¤Ï¡¤
õ(ʬ»¶)
¤Î¤³¤È¤Ç¤¢¤ë.
¢ª Íפ¹¤ë¤Ë¡¤Ê¿¶Ñ¤«¤é¤Î¥º¥ì¤¬(ÀäÂÐÃͤÇ)¤À¤¤¤¿¤¤¤ï¤«¤ë¤È¤¤¤¦¤³¤È¤À.
(Ãí°Õ!!)
¼Â¤Ï¡¤¾å¤Îʬ»¶¡¤É¸½àÊк¹¤ÎÄêµÁ¤Ï³ÎΨŪ¤ÊÃͤò¤È¤ëÎ̤½¤Î¤â¤Î¡¤¤ËÂФ¹¤ëÄêµÁ¤Ç¤¢¤ê¡¤
¤½¤ÎÎ̤¬¼ÂºÝ¤Ë¼¨¤·¤¿¥µ¥ó¥×¥ëÃͤν¸¹ç¡¤¤Ä¤Þ¤ê¡¤º£²ó¤Î¿ô»ú¤ÎÎó¤Ê¤É¡¤
¤ËÂФ·¤Æ¤Ï°Û¤Ê¤ëÄêµÁ¤Îʬ»¶, ɸ½àÊк¹¤òÍѤ¤¤¿Êý¤¬²¿¤«¤È¹¥ÅÔ¹ç¤Ç¤¢¤ë¤³¤È¤¬ÃΤé¤ì¤Æ¤¤¤ë.
¤½¤Î¤¿¤á¤«¡¤Mathematica ¤ËÁȹþ¤Þ¤ì¤Æ¤¤¤ëʬ»¶¡¤É¸½àÊк¹¤Î´Ø¿ô¤Ï
¡Ö¥µ¥ó¥×¥ëÃͽ¸¹çÍѡפˤʤäƤª¤ê¡¤¾å¤ÎÄêµÁ¤È¤Ï°Û¤Ê¤ë.
¤·¤«¤·¡¤¤½¤ÎÄêµÁ¤äÍýͳ¤ò¼¨¤·¡¤Íý²ò¤¹¤ë¤Ë¤Ï¤À¤¤¤Ö½àÈ÷¤¬É¬ÍפʤΤǡ¤
º£²ó¤Ï¤³¤Îñ½ã¤ÊÄêµÁ¤Î¤â¤Î¤À¤±¤ò¼¨¤¹¤Ë¤È¤É¤á¤ë.
¤Á¤Ê¤ß¤Ë¡¤¤½¤Î°ã¤¤¤ÏÈó¾ï¤Ë¾®¤µ¤¯¡¤n ¢ª ¡ç ¤Ç¥¼¥í¤Ë¤Ê¤ë¤Î¤Ç¡¤¼ÂºÝ¡¤
º£²ó¤Ïµ¤¤Ë¤¹¤ë¤Û¤É¤Ç¤â¤Ê¤¤.
¤³¤Îɸ½àÊк¹¤ò»È¤¨¤Ð¡¤¿ÆÉ㤬¤À¤¤¤¿¤¤¤É¤³¤Þ¤Ç¤µ¤Þ¤è¤¤Ê⤤¤Æ¤¤¤Ã¤Æ¤¤¤ë¤Î¤«¡¤
¤½¤ÎÄøÅÙ¤¬·×»»¤Ç¤¤ë.
¤½¤³¤Ç¡¤É¸½àÊк¹¤ò·×»»¤¹¤ë´Ø¿ô¤òºî¤Ã¤Æ»È¤Ã¤Æ¤ß¤è¤¦.
In[20]:= SD[a_] := ( Apply[Plus, Map[(# - Mean[a])^2 &, a] ] /Length[a] )^0.5 ¢« ¿¿ÌÌÌܤËɸ½àÊк¹¤ò·×»»¤¹¤ë. ·×»»Î̤Ï̵Â̤¬¤¢¤ë. In[21]:= SD[ RWmulti[100, 500] ] ¢« 100ÊâÊ⤯¤Î¤ò 500²ó¤ä¤é¤»¤Æ¤ß¤Æ¡¤¤É¤ì¤¯¤é¤¤Ê¿¶ÑÃÍ(=0)¤«¤é¥º¥ì¤ë¤Î¤«¤È¤¤¤¦¤È¡Ä Out[21]= 10.4486 ¢« ¤À¤¤¤¿¤¤ 10Êâʬ¤°¤é¤¤±ó¤¯¤Ë¹Ô¤Ã¤Æ¤¤¤ë¤³¤È¤¬Â¿¤¤¡¤¤È¤¤¤¦¤³¤È¤À¤Ê. In[22]:= RWsd[num_] := SD[ RWmulti[num, 500] ] ¢« num Êâ¸å¤Î°ÌÃÖ¤ÎÊ¿¶Ñ¤«¤é¤ÎÂçÂΤΥº¥ì¡¤¤ò¼¨¤¹´Ø¿ô. In[23]:= RWsd[100] ¢« ¤¿¤á¤·¤Ë In[21] ¤ÈƱ¤¸·×»»¤ò¤·¤Æ¤ß¤ë¤È¡¤ Out[23]= 9.27146 ¢« ¤À¤¤¤¿¤¤Æ±¤¸Ãͤˤʤä¿.
¤µ¤Æ¡¤¤³¤Î´Ø¿ô RWsd[Êâ¿ô] ¤ò»È¤Ã¤Æ¡¤¿ÆÉ㤬¤É¤ì¤¯¤é¤¤¤Õ¤é¤Õ¤éÊ⤤¤Æ¤¤¤Ã¤¿¤«¡¤¤ò¥°¥é¥Õ¤Ë¤·¤Æ¤ß¤è¤¦.
In[24]:= Table[RWsd[n], {n, 1, 200}]; ¢« 1 ¡Á 200Êâ¤Î¾ì¹ç¤Ë¤Ä¤¤¤Æ¡¤³Æ¡¹¤É¤ì¤¯¤é¤¤Ê¿¶Ñ¤«¤éÎ¥¤ì¤Æ¤¤¤ë¤«¡¤¤ò¥ê¥¹¥È¥¢¥Ã¥×. ·ë¹½·×»»»þ´Ö¤¬¤«¤«¤ë¤Î¤Ç¡¤{n, 1, 200} ¤ÎÉôʬ¤ò {n, 1, 100, 10} Åù¤Ëľ¤·¤Æ¤ä¤Ã¤¿Êý¤¬¤è¤¤¤«¤â. In[25]:= ListPlot[%24, PlotJoined -> True]¢« ²£¼´=»þ´Ö¡¤ ½Ä¼´=°ÌÃÖ¤Îɸ½àÊк¹=Ê¿¶Ñ¤«¤é¤Î¥º¥ì
¤Û¤¦.
¤³¤¦¤·¤Æ¤ß¤ë¤È¡¤Ê¿¶Ñ(º£²ó¤Ï¥¼¥í)¤«¤é¤Î¡Ö¥º¥ì¡×¡¤¤¹¤Ê¤ï¤Áɸ½àÊк¹¤ÏÊâ¿ô n ¤È¤¤Á¤ó¤È¤·¤¿´Ø·¸¤¬¤¢¤ê¤½¤¦¤À.
¤Ç¤Ï¡¤¤½¤Î´Ø·¸¤òÄ´¤Ù¤Æ¤ß¤è¤¦.
¤³¤¦¤·¤¿¡¤¥°¥é¥Õ¤Ë¤¤ì¤¤¤Ê´Ø·¸¤¬¤¢¤ë¤È¤¤Ï¡ÖÂпô¥°¥é¥Õ¡×¤Ëľ¤·¤Æ¤ß¤í¡¤
¤È¤¤¤¦¤Î¤¬¤¤¤Ä¤â¤ÎŴ§¤Ê¤Î¤Ç¡¤¤½¤¦¤·¤Æ¤ß¤è¤¦.
In[26]:= LogListPlot[%24, PlotJoined -> True] In[27]:= LogLinearListPlot[%24, PlotJoined -> True]![]()
¢¬ y ¼´¤òÂпô¤Ë. ¤¢¤ó¤Þ´ò¤·¤¯¤Ê¤¤·ë²Ì. ¢¬ x ¼´¤òÂпô¤Ë. ¤¢¤ó¤Þ´ò¤·¤¯¤Ê¤¤·ë²Ì. In[28]:= LogLogListPlot[%24, PlotJoined -> True]
¢« x, y ¼´¤ÎξÊý¤òÂпô¤Ë. ¤ª¤ª¡¤¤¤ì¤¤¤ÊľÀþ¤Ë!!
¤¿¤À¤·¡¤ÅÓÃæ¤Ç
¡ü ¥Ç¡¼¥¿¤Î¥°¥é¥Õ¤òÊÒÂпô(Âпô¼´ = x¼´)¤ÇÉÁ¤¯ ¡Ä LogLinearListPlot[¥ê¥¹¥È]
¢ª x ¼´¤À¤±¤òÂпô¤Ë¤·¤¿¥°¥é¥Õ¤òÉÁ¤¯.
¢ª Needs["Graphics`"]; ¤ò»öÁ°¤Ë¹Ô¤¦É¬Íפ¢¤ê.
¤òÍѤ¤¤Æ¤¤¤ë.
¤µ¤Æ¡¤Î¾Âпô¥°¥é¥Õ¤ò¸«¤ë¤È¡¤¤¤ì¤¤¤ÊľÀþ¤Î´Ø·¸¤¬¸«¤Æ¼è¤ì¤ë.
¤Ä¤Þ¤ê¡¤ÈæÎã´Ø·¸¡¤¤È¤¤¤¦¤³¤È¤Ç¤¢¤ë.
ÈæÎã´Ø·¸¤È¤¤¤¦¤³¤È¤Ï¡¤¿ô¼°¤Çɽ¤ï¤»¤Ð¡¤
log(y) ð a * log(x) + b ¢Î y ð eb * xa
¤È¤¤¤¦¤³¤È¤À¤«¤é¡¤¤Ê¤ó¤È¤«¤·¤Æ¤³¤Î a,b ¤òµá¤á¤ì¤Ð¤«¤Ê¤êºÙ¤«¤¤¤³¤È¤¬²¾Àâ¤È¤·¤Æ¸À¤¨¤ë¤³¤È¤Ë¤Ê¤ë. ¤½¤³¤Ç¡¤°ÊÁ°½¬¤Ã¤¿¡Ö¥°¥é¥Õ¾å¤Î¥«¡¼¥½¥ë¤Î¾ì½ê¤ÎÃͤòÄ´¤Ù¤ë¥Æ¥¯¥Ë¥Ã¥¯¡× ¤ò»È¤Ã¤Æ¡¤¤³¤ÎľÀþ¾å¤ÎÆóÅÀ¤Û¤ÉºÂɸ¤ò½¦¤Ã¤Æ¤ß¤ë¤È¡¤
(log(x), log(y)) ð (1, 0.5), (log(x), log(y)) ð (2, 1)
¤ÎÆóÅÀ¤¬ÆÀ¤é¤ì¤ë(¤â¤Á¤í¤ó¾¤ÎºÂɸ¤ò½¦¤Ã¤Æ¤â¤è¤¤). ¤³¤ì¤ò¾å¤Î¼°¤ËÂåÆþ¤·¤Æ¤ß¤ë¤È¡¤
0.5 ð a * 1 + b 1 ð a * 2 + b
¤È¤¤¤¦¤³¤È¤Ç¤¢¤ë¤«¤é¡¤¤³¤ì¤Ï a ð 1/2, b ð 0 ¤È¤¤¤¦¤³¤È¤Ç¤¢¤ê¡¤¤Ä¤Þ¤ê¡¤ y ð x1/2 ¤È¤¤¤¦¤³¤È¤Ë¤Ê¤ë. ³Îǧ¤Î¤¿¤á¡¤¤½¤ÎÍýÏÀ¥°¥é¥Õ¤È¼Â¸³¥°¥é¥Õ¤òÈæ¤Ù¤Æ¤ß¤è¤¦.
In[29]:= DisplayTogether[ LogLogListPlot[%24, PlotJoined -> True], LogLogPlot[x^0.5, {x, 1, 200}, PlotStyle -> Hue[0]] ]¢« y = x1/2 ¤âÀ֤ǰì½ï¤Ë¥°¥é¥Õ²½. ¤Û¤Ü°ìÃפ¹¤ë¤³¤È¤¬Îɤ¯Ê¬¤«¤ë. In[30]:= DisplayTogether[ ListPlot[%24, PlotJoined -> True], Plot[x^0.5, {x, 1, 200}, PlotStyle -> Hue[0]] ]
¢« Âпô¤Ç¤Ê¤¤¥°¥é¥Õ. ¤ä¤Ï¤ê¤Û¤Ü°ìÃפ¹¤ë¤³¤È¤¬Îɤ¯Ê¬¤«¤ë.
¤¿¤À¤·ÅÓÃæ¤Ç
¡ü ´Ø¿ô¤ÎξÂпô¥°¥é¥Õ¤òÉÁ¤¯ ¡Ä LogLogPlot[´Ø¿ô¡¤ÈϰÏ]
¢ª x, y ¼´Î¾Êý¤òÂпô¤Ë¤·¤¿¥°¥é¥Õ¤òÉÁ¤¯.
¢ª Needs["Graphics`"]; ¤ò»öÁ°¤Ë¹Ô¤¦É¬Íפ¢¤ê.
¤òÍѤ¤¤Æ¤¤¤ë.
¤µ¤Æ¡¤¤³¤ì¤Ç¿ì¤Ãʧ¤¤¿ÆÉ㤬 n Êâ¸å¤ËÊ¿¶ÑÃÍ(= 0)¤«¤é¤É¤ì¤¯¤é¤¤Î¥¤ì¤Æ¤¤¤ë¤«¡¤
¤Ë¤Ä¤¤¤Æ¤«¤Ê¤êÀº³Î¤Ê²¾À⤬¤¿¤Æ¤é¤ì¤ë.
¢£ ²¾Àâ 2
n Êâ¸å¤Î¿ì¤Ãʧ¤¤¿ÆÉã¤Î°ÌÃÖ¤Îɸ½àÊк¹¤Ï¡¤¤Û¤Ü n1/2 ¤Ç¤¢¤ë.
(¤Ä¤Þ¤ê¡¤Á°¸å¤Ë¥º¥ì¤Æ¤¤¤ë¤È¤·¤Æ¡¤¤½¤Î¥º¥ì¤ÎÄøÅÙ¤Ï n1/2 ¤Ç¤¢¤ë.)
¢¢ ¥ì¥Ý¡¼¥È²ÝÂê 2
²¾Àâ 2 ¤¬À®¤êΩ¤Ä¤ï¤±¤òÀâÌÀ¤»¤è.
(¾ÚÌÀ¡¤¤È¤Þ¤Ç¤Ï¤¤¤«¤Ê¤¯¤Æ¤âÀâÌÀ¤Ï¡¤¤È¤¤¤¦¥ì¥Ù¥ë)
¸å¤Ç¼¨¤¹Á²²½¼°¤Ë¤è¤ë³ÎΨʬÉÛ·×»»¤òÍѤ¤¤ë¤Î¤¬Îɤ¤.
¤¿¤À¤·¡¤Taylor Ÿ³«Åù¤Î¿ô³ØÅªÆ»¶ñ¤¬É¬Íפˤʤë¡Ä ¤«¤â.
¾å¤Î¼ø¶ÈÃæ¤Î²ÝÂê¤È¤·¤ÆÍ¿¤¨¤é¤ì¤Æ¤¤¤ë¤è¤¦¤Ê
¡Ö¿¤¯¤Î¿ÆÉ㤬Ê⤤¤¿·ÐÏ©¤òƱ»þɽ¼¨¤¹¤ë¥°¥é¥Õ¡×
¤È¡¤¤³¤Î²¾Àâ¤Î·ë²Ì¤ò¥°¥é¥Õ¤Ç½Å¤Í¹ç¤ï¤»¤Æ¡¤¤É¤¦¤Ê¤ë¤«¸«¤Æ¤ß¤è.
¢ª (¼ø¶ÈÃæ¤Î²ÝÂê)
¤µ¤Æ¡¤¤³¤ÎÌäÂê¤Î¿ÆÉã¤Î°ÌÃ֤γÎΨʬÉÛ( n Êâ¸å¤Ë¡¤°ÌÃÖ x ¤Ë¤¤¤ë³ÎΨ)¤Ï·×»»¤Ï¤Ç¤¤Ê¤¤¤Î¤À¤í¤¦¤«? ¼Â¤Ï¡¤´Êñ¤Ê·×»»¤ò·«¤êÊÖ¤¹¤³¤È¤Çµá¤á¤ë¤³¤È¤¬¤Ç¤¤ë¤Î¤Ç¤¢¤ë. ¤³¤ì¤Ë¤Ï¡¤10000 ¿Í¤Î¿ÆÉ㤬Î㤨¤ÐƱ»þ¤ËÊ⤽Ф¹¡¤¤È¹Í¤¨¤Æ¼¡¤Î¤è¤¦¤Ê¿Þ¤ò¹Í¤¨¤ë¤Èʬ¤«¤ê¤ä¤¹¤¤.
»þ´Ö= n ʬ n+1 ʬ n+2 ʬ n+3 ʬ (Á°) ¥ï¡¼¥¤ | | | | Q/ 0 + 0 + 0 + -¢ª 1250 + /| | | | ¡¿ | < > | | | ¡¿* 0.5 | | | | ¡¿ | Q/ 0 + 0 + -¢ª 2500 + 0 + /| | | ¡¿ | ¡À | < > | | ¡¿* 0.5 | ¡À* 0.5 | | | ¡¿ | ¡À | Q/ 0 + -¢ª 5000 + 0 + -¢ª 3750 + /| | ¡¿ | ¡À | ¡¿ | < > | ¡¿* 0.5 | ¡À* 0.5 | ¡¿* 0.5 | Q/ | ¡¿ | ¡À | ¡¿ | Q/ Oyaji /| ¡Ä 10000 + 0 + -¢ª 5000 + 0 + /| < > | ¡À | ¡¿ | ¡À | < > | ¡À* 0.5 | ¡¿* 0.5 | ¡À* 0.5 | ¥¦¥£¡Á | ¡À | ¡¿ | ¡À | Q/ 0 + -¢ª 5000 + 0 + -¢ª 3750 + /| | | ¡À | ¡¿ | < > | | ¡À* 0.5 | ¡¿* 0.5 | | | ¡À | ¡¿ | Q/ 0 + 0 + -¢ª 2500 + 0 + /| | | | ¡À | < > | | | ¡À* 0.5 | | | | ¡À | Q/ 0 + 0 + 0 + -¢ª 1250 + /| | | | | < > (¸å) ¢¬ ¢¬ ¿Í¿ô ¿Í¿ôŪ¤Ë¤À¤¤¤Ö¤Ð¤é¤±¤¿ ¤¿¤¯¤µ¤ó¤Î¿ÆÉã¿ì¤Ã¤Ñ¤é¤Ã¤ÆÊ⤤ޤï¤ë¤Î¿Þ
¤³¤Î¿Þ¤Ë¨¤·¤Æ¹Í¤¨¤ì¤Ð¡¤n Êâ¸å(n ʬ¸å) ¤Ë°ÌÃÖ x ¤Ë¤¤¤ë¿Í¿ô¤ò
f(x,n)
¤È¤¹¤ë¤È¡¤
0.5 * f(x-1,n) + 0.5 * f(x+1, n) = f(x, n+1)
¤È¤¤¤¦Á²²½¼°¤¬À®¤êΩ¤Ä¤³¤È¤¬Ê¬¤«¤ë.
f ¤ÏÁ´¿Í¿ô¤Ç³ä¤ì¤Ð³ÎΨ¤È¸«¤Ê¤·¤ÆÎɤµ¤½¤¦¤À¤«¤é¡¤·ë¶É¡¤
n Êâ¸å(n ʬ¸å) ¤Ë°ÌÃÖ x ¤Ë¿ÆÉ㤬¤¤¤ë³ÎΨ P(x, n) ¤Ï
P(x, n+1) = 0.5 * P(x-1,n) + 0.5 * P(x+1, n)
¤Ç n = 0 ¤«¤é½ç¤Ë·×»»¤·¤Æ¤¤¤±¤Ð¤è¤¤¡¤¤È¤¤¤¦¤³¤È¤Ë¤Ê¤ë.
(Ãí) »þ´Ö = 0 ¤Ç¤Ï¡¤¿ÆÉã¤Ï¸¶ÅÀ x = 0 ¤Ë³ÎΨ 1 ¤Ç¸ºß¤¹¤ë.
¤½¤³¤Ç¡¤¤³¤ÎÁ²²½¼°¤Ë½¾¤Ã¤Æ·×»»¤ò¿Ê¤á¤ë´Ø¿ô¤òºî¤í¤¦.
n Êâ¸å(n ʬ¸å)¤Î¿ÆÉã¤Î¸ºß³ÎΨ¤ò¥ê¥¹¥È¤Ë¤·¤¿
¥ê¥¹¥È a(n) = {P(-m, n), P(-m+1, n),¡Ä, P(-1, n), P(0, n), P(1, n),¡Ä, P(m, n) }
¤ËÂФ·¤Æ¡¤
RWonedist[ a(n) ] ¤È¤¹¤ë¤È a(n+1) ¤¬½ÐÎϤµ¤ì¤ë¤è¤¦¤Ë¤·¤è¤¦.
In[31]:= RWonedist[a_] := Module[{num, b, result}, num = Length[a]; b = Append[Prepend[a, 0], 0]; ¢« a(n) ¤ÎÁ°¸å¤Ë¥¼¥í¤ò¤Ä¤±¤Æ¡¤»²¾ÈÈϰϤËÌ·½â¤¬¤Ê¤¤¤è¤¦¤Ë¤·¤Æ¤¤¤ë. result = Table[0.5 * b[[n - 1]] + 0.5 * b[[n + 1]], {n, 2, num + 1}]; ¢« ¤³¤ì¤¬¾å¤ÎÁ²²½¼°¤Ë¤è¤ë·×»». Return[result] ] In[32]:= RWonedist[{0, 0, 0, 1, 0, 0, 0}] ¢« ¤¿¤á¤·¤Ë¾å¤Î¿Þ¤Î°ìÈÖº¸Â¦ÁêÅö¤ò¤ä¤Ã¤Æ¤ß¤ë¤È¡Ä Out[32]= {0, 0, 0.5, 0, 0.5, 0, 0} ¢« ³Î¤«¤Ë! In[33]:= RWonedist[%] ¢« ³¤±¤ë¤È¡Ä Out[33]= {0, 0.25, 0, 0.5, 0, 0.25, 0} ¢« ¤³¤ì¤â¾å¤Î¿Þ¤ÎÄ̤ê. In[34]:= RWonedist[%] ¢« ¤µ¤é¤Ë³¤±¤ë¤È¡Ä Out[34]= {0.125, 0, 0.375, 0, 0.375, 0, 0.125} ¢« ¤³¤ì¤â¤¢¤Ã¤Æ¤¤¤ë.
¤¿¤À¤·ÅÓÃæ¤Ç
¡ü ¥ê¥¹¥È ¤ÎÀèÆ¬¤ËÍ×ÁǤò²Ã¤¨¤ë ¡Ä Prepend[¥ê¥¹¥È, Í×ÁÇ]
¢ª Prepend[{a,b}, x] ¤Ï {x, a, b} ¤ò½ÐÎϤ¹¤ë.
¤òÍѤ¤¤Æ¤¤¤ë.
¤³¤ì¤Ç¡¤½é´üÃͤȤ·¤Æ ¸ºß³ÎΨ¤Î¥ê¥¹¥È ¤òÍѰդ·¤Æ¡¤RWonedist ¤ò n ²óŬÍѤµ¤»¤ì¤Ð
n ʬ¸å¤Î¸ºß³ÎΨ¤Î¥ê¥¹¥È¤¬ÆÀ¤é¤ì¤ë¤³¤È¤Ë¤Ê¤ë.
¤è¤Ã¤Æ¡¤¤½¤¦¤¤¤¦´Ø¿ô¤ò(0 ¡Á n ʬ¸å¤Þ¤Ç¤Î·ë²Ì¤òÁ´Éô½Ð¤¹¤è¤¦¤Ëºî¤Ã¤Æ)
RWdist[½é´üÃͥꥹ¥È, Êâ¿ô] ¤È¤·¤ÆÍѰդ·¤è¤¦.
In[35]:= RWdist[a_, num_] := NestList[ RWonedist[#]&, a, num ] In[36]:= RWdist[{0, 0, 0, 1, 0, 0, 0}, 3] ¢« ¤¿¤á¤·¤Ë¾å¤ÈƱ¤¸¤³¤È¤ò¤ä¤Ã¤Æ¤ß¤Æ³Îǧ. Out[36]= {{0, 0, 0, 1, 0, 0, 0}, {0, 0, 0.5, 0, 0.5, 0, 0}, {0, 0.25, 0, 0.5, 0, 0.25, 0}, {0.125, 0, 0.375, 0, 0.375, 0, 0.125}}
¤³¤ì¤Ç¡¤¿ÆÉã¤Î¤¤¤ë¾ì½ê¤Î³ÎΨʬÉÛ¤¬Ä¾ÀÜ·×»»¤Ç¤¤ë¡¤¤È¤¤¤¦¤³¤È¤Ë¤Ê¤Ã¤¿.
¤µ¤Æ¡¤¾å¤ÎÎã¤Ç¤Ï¿ÆÉã¤Î¤¤¤ë°ÌÃÖ¤ò 7¸Ä½ê¤·¤«¹Í¤¨¤Ê¤«¤Ã¤¿¤¬¡¤¤½¤ì¤Ç¤Ï¶¹¤¹¤®¤ë¤Î¤Ç¡¤
100¸Ä½êÄøÅ٤˹¤²¤Æ¡¤¾¯¤··×»»¤·¤Æ¤ß¤è¤¦.
In[37]:= Table[0, {99}] ¢« 99 ¸Ä¤Î 0 ¤¬Ê¤֥ꥹ¥È. Out[37]= ¡Äά¡Ä In[38]:= a = ReplacePart[%, 1, 50] ¢« ¿¿¤óÃæ¤À¤±³ÎΨ¤ò 1 ¤Ëľ¤·¤Æ¡¤½é´üÃͥꥹ¥È¡¤¤È¤¹¤ë. Out[38]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} In[39]:= RWdist[a, 200] ¢« 200 Êâ¸å(ʬ¸å)¤Þ¤Ç¤Î¸ºß³ÎΨʬÉÛ¤ò·×»». Out[39]= {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ¡Äά¡Ä 0.00101877, 0, 0.000666154, 0, 0.00041809, 0, 0.000241867, 0, 0.000110277, 0}} In[40]:= ListPlot[%39[[-1]], PlotStyle -> PointSize[.01], PlotRange -> All]¢« 200 ʬ¸å¤Î³ÎΨʬÉÛ¡¥¤¤ì¤¤¤ÊʬÉÛ¤À. In[41]:= Table[ ListPlot[ %39[[n]], PlotStyle -> PointSize[.02], PlotRange -> All ], {n, 50, 200, 50} ]
¢¬ 50,100,150,200 ʬ¸å¤Î³ÎΨʬÉÛ¡¥·Á¾õ¤ÏƱ¤¸¤À¤¬¡¤¤À¤ó¤À¤óÉý¤¬¹¤¬¤ë¤Î¤¬¤è¤¯¤ï¤«¤ë.
¤³¤ì¤Ç¡¤³ÎΨʬÉÛ¤¬·×»»¤Ç¤¤ë¤Î¤Ç¡¤¿ÆÉ㤬 n ʬ¸å¤Ë°ÌÃÖ x ¤Ë¤¤¤ë³ÎΨ¤¬¸·Ì©¤Ëʬ¤«¤ë¡¤¤È¤¤¤¦¤â¤Î¤À.
¤³¤³¤ÇÂç»ö¤Ê¤Î¤Ï¡¤
³ÎΨŪ¤Ê¸½¾Ý¤Îµóư¤¬¡¤Íð¿ô¤ò»È¤ï¤º¤Ë·×»»¤Ç¤¤¿
¤È¤¤¤¦¤³¤È¤Ç¤¢¤ë.
¸·Ì©¤Ë¸À¤¨¤Ð¡¤Á²²½¼°¤Ë¤è¤Ã¤Æµá¤Þ¤ë¤Î¤Ï¡¤¡Ö¤¿¤¯¤µ¤ó¤Î¿ÆÉã¤Îµóư¤ÎÊ¿¶Ñ¡×
¤È¤Ç¤â¤¤¤¦¤Ù¤¤â¤Î¤Ç¡¤¡Ö¤¢¤ëÆÃÄê¤Î¿ÆÉã¤Îµóư¡×¤½¤Î¤â¤Î¤òÄɤ¨¤ë¤ï¤±¤Ç¤Ï¤Ê¤¤.
¤½¤¦¤¤¤¦°ÕÌ£¤Ç¡¤³ÎΨʬÉۤΥ°¥é¥Õ(= Á²²½¼°¤Çµá¤á¤¿¤â¤Î)¤òÆÀ¤ë¤³¤È¤ò
¡Ö¼å¤¤²ò¤òµá¤á¤ë¡×¤È¤¤¤¤¡¤
³Æ¿ÆÉã¤ÎÊ⤯·ÐÏ©¤ò³Æ¡¹µá¤á¤ë¤³¤È¤ò
¡Ö¶¯¤¤²ò¤òµá¤á¤ë¡×¤È¤¤¤Ã¤Æ¶èÊ̤¹¤ë.
Î㤨¤Ð¡¤¡Ö·ë¶É ¿ÆÉ㤬Á´Éô¤Ç¤É¤ì¤¯¤é¤¤Ê⤯¤Î¤«¡×¤È¤¤¤¦¤è¤¦¤ÊÌäÂê¤Ï¡¤
¡Ö¼å¤¤²ò¡×¤Ç¤ÏÅú¤¨¤¬¤Ç¤Ê¤¤.
¤»¤Ã¤«¤¯³ÎΨʬÉÛ¤ÎÍýÏÀÃͤ¬·×»»¤Ç¤¤¿¤Î¤Ç¡¤¤½¤ì¤È¼Â¸³ÃͤòÈæ³Ó¤»¤è.
¢ª (¼ø¶ÈÃæ¤Î²ÝÂê)
# n ʬ¸å¤Î °ÌÃÖ x ¤Ë¿ÆÉ㤬¤¤¤ë³ÎΨ¤ÎÍýÏÀÃÍ¡¤¤È¼Â¸³¤Ç¤ÎÉÑÅÙ¤òÈæ¤Ù¤Æ¤ß¤ë¤Ê¤É¤¹¤ì¤Ð¤è¤¤.
# ÅÙ¿ôʬÉÛ¤ò»È¤Ã¤ÆÈæ³Ó¤¹¤ì¤Ð¤â¤Ã¤È¤è¤«¤í¤¦.
¤µ¤Æ¡¤¤»¤Ã¤«¤¯Âô»³·×»»¤·¤Æ¤¢¤ë¤Î¤Ç¡¤¤½¤ì¤é¤Î·ë²Ì¤ò°ìÅÙ¤Ëɽ¼¨¤·¤Æ¤ª¤³¤¦.
¤³¤ì¤«¤é¤â²¿¤«Ã諤¬ÆÀ¤é¤ì¤ë¤À¤í¤¦¡Ä
In[42]:= ListPlot3D[%39, PlotRange -> All]¢« ³ÎΨʬÉÛ¤¬»þ´Ö¤Ç¤É¤¦ÊѲ½¤·¤Æ¤¤¤¯¤«¤¬°ìÌܤǸ«¤¨¤ë.
¤¿¤À¤·¡¤¼¡¤Î´Ø¿ô¤òÍѤ¤¤Æ¤¤¤ë.
¡ü 3 ¼¡¸µ¥Ç¡¼¥¿¤Î¥°¥é¥Õ¤òÉÁ¤¯ ¡Ä ListPlot3D[3¼¡¸µ¥Ç¡¼¥¿¥ê¥¹¥È]
¢ª ¥Ç¡¼¥¿¥ê¥¹¥È¤Ï¡¤¹â¤µ¤òɽ¤ï¤¹¼Â¿ô¤ÎĹÊýÇÛÎó¤Ç¤Ê¤¤¤È¤¤¤±¤Ê¤¤.
¤µ¤Æ¡¤¾å¤Î In[41] ¤Ç¤Î¥°¥é¥Õ¤Ï³§»÷¤¿·Á¤ò¤·¤Æ¤¤¤ë.
Éý¤Îñ°Ì¤òÊѤ¨¤ì¤Ð¤½¤Ã¤¯¤ê¤Ç¤Ï¤Ê¤«¤í¤¦¤«.
¤³¤ì¤ÏËÜÅö¤«? ¤½¤·¤Æ¡¤¤Ê¤¼¤À¤í¤¦?
¤Þ¤º¡¤Á°²ó¤âÍѤ¤¤¿¥Ò¥¹¥È¥°¥é¥à¤ò»È¤Ã¤Æ¡¤¤³¤ÎÍýÏÀÃͤ¬¤É¤ì¤¯¤é¤¤¼Â¸³ÃͤȤ¢¤¦¤â¤Î¤«¡¤ÌܤÇľÀܸ«¤Æ¸¡¾Ú¤·¤è¤¦.
¤½¤ì¤Ë¤Ï¡¤Á°²ó¤Î
FreqRate[a_] := Map[ { N[ #[[1]]/Length[a] ], #[[2]] }&, Frequencies[a] ] IRHistogram[a_] := BarChart[ FreqRate[a] ]
¤òºÆ¤ÓƳÆþ¤·¤Æ¡¤»È¤Ã¤Æ¤ß¤ë.
In[43]:= RWmulti[200, 500]; ¢« 200ÊâÊ⤫¤»¤ë¡¤¤Î¤ò 500 ²ó. In[44]:= IRHistogram[ % ]¢« ¿ÆÉ㤬 200Êâ¸å¤Ë¤É¤³¤Ë¤¤¤ë¤Î¤«. ¤½¤Î³ÎΨʬÉÛ(¼Â¸³ÃÍ).
In[44] ¤Î·ë²Ì¤ò In[40] ¤Î·ë²Ì¤ÈÈæ³Ó¤¹¤ì¤Ð¡¤ÍýÏÀÃͤȼ¸³ÃͤÎÈæ³Ó¤¬¤Ç¤¤ë.
¤ä¤Ã¤Æ¤ß¤è. ¢ª (¼ø¶ÈÃæ¤Î²ÝÂê)
¤µ¤Æ¡¤¤µ¤é¤Ë¿¤¯¤Î¼Â¸³·ë²Ì¤ÎʬÉÛ¤ò¤ß¤Æ¤ß¤ë¤È¡Ä
In[45]:= Table[ IRHistogram[ RWmulti[n, 500]], {n, 50, 200, 50} ]¢¬ 50,100,150,200 ʬ¸å¤Î³ÎΨʬÉۼ¸³ÃÍ¡¥·Á¾õ¤¬¤Û¤ÜƱ¤¸¤À.
¤Þ¤º¡¤¾å¤Î·ë²Ì¤ò In[41] ¤Î·ë²Ì¤ÈÈæ³Ó¤»¤è.
ÍýÏÀ¤È¼Â¸³¤Ï¤½¤ì¤Ê¤ê¤Ë¹ç¤¦¤À¤í¤¦¤«¡¥¢ª (¼ø¶ÈÃæ¤Î²ÝÂê)
¢¢ ¥ì¥Ý¡¼¥È²ÝÂê 3
¤µ¤é¤Ë In[42] ¤ËÁêÅö¤¹¤ë¼Â¸³·ë²Ì¤Î¥°¥é¥Õ¤òºîÀ®¤·¡¤In[42] ¤Î¥°¥é¥Õ¤ÈÈæ³Ó¤»¤è.
¤µ¤Æ¡¤¾å¤Î·ë²Ì¤ò¸«¤ë¤È¡¤¿ÆÉã¤Î¤¤¤ë°ÌÃ֤γÎΨʬÉۤμ¸³ÃͤϷÁ¾õŪ¤Ë¤ÏƱ¤¸·Á¾õ¤Ë»¶¤é¤Ð¤ë¤è¤¦¤À.
¤·¤«¤â¡¤¤½¤Î·Á¾õ¤Ï¤É¤³¤«¤Ç¸«¤¿¤è¤¦¤Ê·Á¤ò¤·¤Æ¤¤¤ë.
¤è¤¯»×¤¤½Ð¤¹¤È¡¤Á°²ó¼¨¤·¤¿²¾Àâ 4¡¤¤â¤·¤¯¤Ï¡ÖÃæ¿´¶Ë¸ÂÄêÍý¡×¤Î¸Ä½ê¤Ç¤Ç¤Æ¤¤¿¥°¥é¥Õ¤Ë¤³¤Î¥°¥é¥Õ¤Ï¤½¤Ã¤¯¤ê¤Ç¤¢¤ë.
¤³¤ì¤Ï¶öÁ³¤À¤í¤¦¤«?
¹Í¤¨¤Æ¤ß¤è¤¦.
Êâ¿ô¤ò¤µ¤é¤ËÁý¤ä¤¹¤Ê¤É¤·¤Æ¡¤Æ±ÍͤËÄ´¤Ù¤Æ¤ß¤è¤¦. ¢ª (¼ø¶ÈÃæ¤Î²ÝÂê)
¢¢ ¥ì¥Ý¡¼¥È²ÝÂê 4
¾å¤ÇÆÀ¤é¤ì¤¿¥°¥é¥Õ¤ÏÁ°²ó¼¨¤·¤¿²¾Àâ 4¡¤¤â¤·¤¯¤Ï¡ÖÃæ¿´¶Ë¸ÂÄêÍý¡×¤Î¸Ä½ê¤Ç¤Ç¤Æ¤¤¿¥°¥é¥Õ¤Ë¤è¤¯»÷¤Æ¤¤¤ë.
¤½¤ÎÍýͳ¤ò½Ò¤Ù¤è.
(¿ÆÉ㤬 n Êâ¸å¤Ë¤¤¤ë°ÌÃ֤Ȥϡ¤ +1 ¤« -1 ¤Ë¤Ê¤ëÍð¿ô¤ò n ²ó¤·¤¿¤â¤Î¤Ç¤¢¤ë¡¤¤È¹Í¤¨¤ë¤È¡Ä)
¤µ¤Æ¡¤¤³¤Î¥°¥é¥Õ¤ÈÃæ¿´¶Ë¸ÂÄêÍý¤È¤Î´Ø·¸¤ÎÍýͳ¤Ï¥ì¥Ý¡¼¥È¤Ç¹Í»¡¤¹¤ë¤È¤·¤Æ¡¤
¤³¤ì¤ò(Íýͳȴ¤¤Ç)»ö¼ÂÉôʬ¤òµ½Ò¤·¤Æ²¾Àâ¤Ë¤·¤Æ¤ª¤³¤¦.
¢£ ²¾Àâ 3
n Êâ¸å¤Î¿ì¤Ãʧ¤¤¿ÆÉã¤Î°ÌÃ֤ϡ¤Ãæ¿´¶Ë¸ÂÄêÍý¤Ë¤Ê¤ó¤é¤«¤Î·Á¤Ç½¾¤¦.
¤Ä¤Þ¤ê¡¤¤½¤Î°ÌÃÖʬÉۤηÁ¾õ¤Ï n ¢ª ¡ç ¤ÇÃæ¿´¶Ë¸ÂÄêÍý¤Î¼¨¤¹·Á¤Ë¤Ê¤ë.
¤·¤«¤â¡¤¤½¤Î»þ¤ÎÊ¿¶Ñ¤Ï ¥¼¥í¡¤É¸½àÊк¹¤Ï n1/2 ¤Ë¤Ê¤ë.
¤µ¤Æ¡¤º£²ó¤Î¿ì¤Ãʧ¤¤¿ÆÉã¤Ï¡¤Á°¸å¤Ë¤·¤«°Üư¤»¤º,
¤·¤«¤â¤É¤Á¤é¤Ø¹Ô¤¯³ÎΨ¤â 1/2 ¤ÈƱÃͤȤ¤¤¦´Êñ¤Ê¿ÆÉã¤À¤Ã¤¿(^-^).
¤Ç¤Ï¡¤¤â¾¯¤·¤ä¤ä¤³¤·¤¤ÀßÄê¤Î¾ì¹ç¤Ï¡¤¾å¤ÎÁ´¤Æ¤Î²òÀϤϤɤ¦¤Ê¤ë¤À¤í¤¦¤«?
Î㤨¤Ð¡¤
Á°¤Ø¹Ô¤¯³ÎΨ = 1/3,
¤È¤É¤Þ¤Ã¤Æ¤¤¤ë³ÎΨ = 1/3,
¸å¤í¤Ø¹Ô¤¯³ÎΨ = 1/3
¤À¤Ã¤¿¤é¤É¤¦¤Ê¤ë¤À¤í¤¦?
¾¤Î¾ì¹ç¤Ï?
¢¢ ¥ì¥Ý¡¼¥È²ÝÂê 5
ŬÅö¤Ë¿ÆÉã¤Îµóư¤òÀßÄꤷ¤Æ¡¤¼«Ê¬¤Ç¤³¤Î¾Ï¤ÈƱÍͤβòÀϤò¹Ô¤Ã¤Æ¤ß¤è.
°Û¤Ê¤Ã¤¿·ë²Ì¡¤Æ±¤¸¤À¤Ã¤¿·ë²Ì¡¤³Æ¡¹¤Ë¤Ä¤¤¤Æ¡¤¤Ê¤¼°Û¤Ê¤Ã¤¿¤Î¤«¡¤Æ±¤¸¤À¤Ã¤¿¤Î¤«¡¤¤ò¹Í»¡¤»¤è.