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Abstract

We study cxistence and numerical approximation of solutions to the quantum
drift-diffusion equation arising in a semiconductor at the room temperature(i.e. at
the high temperature ). We obtain the existence of stational solutions by mcans of a
numerically motivated solution map, introducing the gencralized chemical potential(
quasi-Fermi-levcl ). This approach leads to an iterative solution method of the QDD
equation coupled with the Poisson equation. An implicit semidiscretization of the
time-dependent QDD equation is discussed. The new discretization in space of the
QDD equation is proposed.

1 Imntroduction

The semiconductor transport in ultra-small structurcs at the room temperature(i.c. at
the high temperature) is modeled by the quantum hydrodynamics. The quantum drift-
diffusion model is viewed as one of the hicrarchy of the quantum hydrodynamic models,
which is derived from a moment expansion of Wigncr-Boltzmann equation including colli-
sional effects[1]. It is known that this model is a quantum corrected version of the classical
drift-diffusion model, with O(A2?) corrections to the stress tensor[2]. We study the QDD
system in a bounded domain Q C R?(d > 1) with piccewise smooth boundary, assuming
Boltzmann statistics.

eAp=n-—f, (1)

, . Ay/n
On + div(nV (e — In(n) + /\2—7\/7_:-—)) = 0. (2)
Here n is the electron density and the electrostatic potential . f is the density of ionized
impuritics. € is the semiconductor permittivity. A is the scaled Planck constant.
The fourth-order continuity equation (2) for the electron density is split into two
second-order cquations, using the generalized chemical potential(quasi-Fermi-level)v =



¢ —In(n) + AQAJ\/%@D].

eAp =n-— f, (3)
on + div(nVv) = 0, (4)
,\297‘/%—’_’ ~In(n)+ ¢ = . (5)

In this paper we present the existence of stational solutions by mecans of a numerically
motivated solution map, which leads to an iterative solution method of the QDD system.
An implicit semidiscretization of the time-dependent QDD equation, which results in the
elliptic system, is discussed. The new discretization in space of the elliptic system is
proposed.

2 Existence of a solution and an iterative solution
method

The analysis for the steady statc of the QDD model was performed by a variational
approach in the previous works[3],[4]. We obtain the existence of stational solutions by
means of numnerically motivated solution map. The result provides an iterative solution
method of the QDD system. The analysis of stational solutions is based on the following
assumptions.

(A.1) Q C R?, d=1,2, or d=3 is a bounded domain with piecewise smooth boundary.

(A.2) 9O\ (82p U 0Ny) is & set of measure zcro.

(A.3) There exists for all f € L*(Q) and all a,up € WH(Q) a function u € Wh4(Q)
with

div(aVu) = f, u—up € Hy(QU Ny) (6)

[ullwra) < Clllupliwia@) + [1f1] o). (7

Here p, g € (2, 00] with } + ¢ = 3 such that H'(Q) < L?(Q) and H*(Q) — W4(0).

(A.4) The Dirichlet boundary condition data (pp,vp,up) € (H(Q) N L®(Q))3, on
0Qp. The Neumann boundary conditions %“3 = g—‘; = 3—’5 =0, on ONy.

(A.5) f € L>(0).

We cmploy the exponetial transformation of variables p = y/n = e to construct the
solution mapping. (5) is replaced by the equivalent form (9). In this casc, if u is uniformly
bounded, the positivity of the root-density p = e* is ensured.

eAp = e —f (8)
~XV(pVu) + pu = g(cp - v)in Q, (9)
—div(nVv) = 0. (10)
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The system is supplemented with the set of boundary conditions:

¥ =%p,U=Up, ¥V ="Vp, ON aQD7 (11)

Vo-v=Vu-v=Vv.-v=0o0n o0y. (12)

To solve iteratively, we define the following solution mapping. Let w € L?(Q) be given
in Q.

Algorithm 2.1 (Solution map)
(P1) Solve

eAp = e® — f, (13)

subject to the boundary conditibns( 11),(12) for .
(P2) Solve ‘

—div(e*Vv) = 0, (14)

subject to the boundary conditions(11),(12) for v.
(P3) Solve

—2X2V (e¥Vu) + 2e%u = e*(p — v), (15)
subject to the boundary conditions(11),(12) for u.

It readily follows from Lax-Milgram thcorem that there exists a unique solution to
each linear problem. Thus the mapping T : X — X, T(w) = u, with X = {w € L*(Q) :
—U <w < U in Q}, is well defined. For U,U > 0, we define the cut-off function

U ify>U
Y if -U<y<U. (16)
-U ify<-U

Py =

To obtain the L*® bounds for ¢, u and v, we employ the following truncated system of
(17)-(19) defined by the cut-off function.

EAQD = eZPu - fa (17)

Pu
22V (e*Vu) + Py = E5—((,0 -v), (18)
~V(e*P V) = 0, (19)

subject to the boundary conditions (11)-(12). The proof of existence of solutions to the
truncated system is based on the following a priori estimates. The result is obtained by
applying Stampacchia’s lemma[5] and maximum principle type arguments.
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Lemma 2.1 (A priori estimate ) Let (¢,v,u) € (H(Q) N L®())? be a weak solution to
the truncated system. Then there exist positive constnants ¢,%,v,0,U,U such that
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—p<p<P —v<v<T, —U<usTinQ (20)
where
? = wotal@elfllal®) >0, (21)
_(e = o + CZ(SI’ 6)(62U + “f“oo)’CZ(Q) > 0’ (22)
T = v=up, (23)
T = max(P15,U), (24)
+ ') .
U = maz(g—Zq, Uv), (25)
o = suplep|,vo = sup |v|,Up = sup|ul. (26)
oQp o0p o0p
Proof. Let 9 > p. Selecting the test function (¢ — ¥)*, where t* = maz(t,0),
[t —v) P = — [ (@ = ne-v)ds @)
Q Q
< [ flleoll(e = ) ll1(meas( > ). (28)
By a Poincare type inéquality, we obtain
CL)I(e — ¥) Tl € €| flloo(meas(y > )2, C1 > 0. (29)
Let 2 < r < 6. By Sobolev’s imbedding theorem, it follows for all n > v
Gl =T = e —¥) Il (30)
> [ (p-vrds (31)
{e>n}
> [ n-vrds (52)
{e>n}
= (n— 1) 'meas(p >n). (33)
For n> w > ¥o,
meas(p > n) < K(n — 9)™ (meas(p > ¢))"/* (34) -

where K = C()"¢™"|| fl|%- Applying Stampacchia’s lemma for g(n) = meas(p > n):

g(po +¥*) = 0 with ¥* = c1(Q, €)|| flloo, where c1(2,€) = C(Q)e™". (35)



We obtain ¢ < @o + 9" = o + 1€ €)|| fllo = 7. We need a upper bound for u to find
a lower bound for . Let U = max(‘”” Up). For u > U, the maximum principle gives a
lower bound for v.

0 =/Q~div(ezp"V'u)(—v )t = /Q P4V (~v — v)t|2dz (36)
— / CZPU’V(—’U . Q)+!2d.’11 (37)
> [ (v -t (38)

Q

We obtain v > —v. Selecting the test function (u — U)* € H}(QU 8Qy),

/ NeePU|V (u — T)*2dz + / eP4(2u — (o — v))(u — T)*dz = 0, (39)
9] Q

Then we have the following estimates

/ P (2u = (¢ — v))(u — U)*tdz > / eP(2U — (7 +v)(u—-T)tdz >0.  (40)
Q

Q
It follows that u < U. Using (—p — %)™ with ¥ > @y,
/ V(¢ — p)*Pdz = / (@7 — f)(~p — $)*dz (41)
Q 0
< / (€@ + 1 Floo) (— — ¥)*da (42)
Q

We recall the Stampacchia’s lemma.
meas(—p > o + ) = 0,9" = e + c2(Q, )| flloo- (43)

This implies ¢ > —(pp + ¥*) = ~p,¥* = €0 + c2( )| flloo- Let U = maa:( ® Us).
Similarly we obtain v < ¥ from the maximum principle arguments. Applying the test
function (—u — U)* € Hy(QQU O0y), we obtain u > —U. O

Theorem 2.1 (Emistence of a weak solution) There czists a solution of the boundary
value problem (17)-(19) with the boundary conditions (11) and (12) in the regularity class
of H*(Q2) N L*®(Q).

Proof. The mapping T is well-defined. It can be secn that the mapping T is con-
tinuous and compact. In fact, ||ull; is bounded. Selecting the test function v —up €
H& (Q U oQn),

Jo A2ePY |V (u = up)|Pdz + [, \2eP"VupV(u — up)dz + J,e"™ u(u — up)dr

= [ oo up)in (44
Q
Cillu— up|? < /n P |V (4 — up)Pdz (45)

< GO+ 230 4wl lu - up (46)
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Similarly, by (13) and (14) we conclude uniform H! bounds for ¢ and v. The Schauder
fixed point theorem gives the existence of a fixed point,ie., a solution (p,u,v) to (8)-

(10). O
Lemma 2.2 (Pinnau) The quantum operator A(n) = —A\/‘{Tﬁ is monotonic with respect

to the LP()-norm.

Proof. The operator A(n) is Gateaux differetiable. For h € [0,1], let &€ :=ny—h(n; —
n2). By the mean value theorem,

(A(ny) — A(na),ng — ng) = (A'(€), 1 — na). (47)

The straight forward calculation gives

(A (€)ma—m) = [ V(s (48)

From [4, lemma 24], there exists a constant C > 0 such that
(A'(€),n1 — na) 2 Cllny — |7 (49)
where p, ¢ € (2, 00] satisfies - + 2 = 3. !

Theorem 2.2 The mapping T is a contraction with respect to the LP(Q)-norm.

Proof. Let wy,wp € X = {w € L?(Q): -U <w < U in O} and let v;,i = 1,2 be the
solution of

~V(e**Vv) = 0. (50)
Taking the difference and employing Hoélder’s incquality, we get
lvr = vallur < O||Vval|Lalle® — e (51)

where 1 + % = 7. We have from the elliptic estimate
o1 = vallr < Cllopllwrallws — wal|». (52)
Let (ui,:),t = 1,2 be the solution of
GA(,D = 321‘ - fa (53)
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Selecting the test fuction ny — ng € HE(Q U 00y ),

0= =22 [,(L2 — T2\ () — np)da + 1 [ (In(n1) — In(ny))(ny — ny)da

P1 P2
1 1 ;
-3 (o1 — @2)(ny — n2)dz + 5 (v1 — v2)(n1 — ng)dz (55)
Q Ja
=hL+L+L+1 (56)

We estimate term wise.

I = (A(£),n1 = ny) > Clini — nall3s, (57)

I, >0, , (58)

I = / [V (1 — 2)|?dz > 0, (59)
Q

14 S ||'Ul - ’U2”L2”’n1 - nzllLP. (60)

Combining these cstimates, we have
[ur = wallze < Cliny ~ mal|ze < ljvr — v an. (61)
From (52), we finally obtain
lur — uzlle < Cllupllwrallwr — wal|ce. (62)

The asscrtion follows by choosing ||up||wie < Vo < 1 small enough. a

3 Discretization in time

Let 74 = ty — tx—1 > 0 be the time step. Set the initial condition pg = +/ng. For k € N,
we discretize (3),(4) and (9), employing an implicit time discretization by a backward
Euler scheme as follows.

nk — nk-1
+ div(n*Vo*) = 0, (63)
Tk :
—2X2V(p*Vuk) + 205U = pF(p* — o), (64)
eAp* =n* — f, (65)

subject to the simplified boundary conditions:
o* = 0,uF = up, Vok - v = 0 on 69. (66)

The transicnt problem is replaced by a sequence of elliptic problems. As pointed out in the
previous works[6], the following entropy dissipation property is presented.This provides
the stability bounds of the approximate solutions.
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Lemma 3.1 (Discrete entropy estimate). Let (o, uf, vF) € H}(Q) x HY(Q) x HY() be a
solution of (63)-(65) subject to the boundary condztmns (66). Then the following entropy
(free energy) estimates holds:

Sk < Sk—l (67)
where §* = M2 [ [Vp*Pdz + [o(n*(In(n*) — 1) + 1)dz + § [, [V**dz.

Proof. The straightforward calculation using the chemical potential v* as a test func-
tion gives the entropy estimates. O

4 Discretization in space

Finally, we propose a new nonlinear scheme to the QDD equation[7] for discretization
in space. The QDD equation is discretized by conservative difference schemes. The
simulation region € is partitioned into computational cells ;, i.e., Q = U;§;. Assuming
that the flux J = e“Vn in (63), where n = exp(—v) and G = ¢ + )\2%3, and the flux
F = pVu in (64), we obtain by Green'’s formula over each computational cell 2; that

on
— G — 3
/ .- ndz /a o B —ds =0, (68)

' ou 1
2 — T e - —-— 3
. A p—ds /ipuda: 5 ./ip(‘P v)dz. (69)

The numerical fluxes Ji;1/2 and Fj,,/; yield

0;
Jiv1j2 or Fip1pa = f’H , 0=G oru. (70)
o _ '

Substituting in (68) and (69) the average fluxes Jii1/2 and Fii1/2 lcads to a class of
conservative schemes, following Tikhonov and Samarskii in [8]. In this case, the key
ingredient is to find an explicit integration of the cxponetial function with respect to the
potentials. Assuming the pieccwise-linear representation of 6, we have

he=%
-0 _
/ni e i = B(0i1 — 6;) (71)

where B is the Bernoulli function. This yields the fully discrete system as follows.

nf - nf_l B(GH-I Gk) Nit1 - (B (Gk G1+1) + B(Gf - Gf—l))nf + B(Gf—l - Gf)"f—l

Tk h?
| (72)
P1+1B( Uiyy — f)(uflrl - uf)hz pEB(uf — uf ) (uf —uf ) + ARk = ‘1'\'2‘5‘(%"5 — k),
(73)

where A = f pdz. This nonlinear scheme is a consistent generalization of the Scharffeter-
Gummel scheme to the classical drift-diffusion cquation7].
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