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Abstract

This paper describes a numerical method for a time-dependent quantum drift-diffusion
model with emphasis on adaptive time discretization. The adaptive time step algorithm
is proposed by introducing the derivative of the free energy of the system. The algorithm
is evaluated for carrier transport simulations in n+-n-n+ structures. The new algorithm
significantly reduces the total number of time step required to reach the stationary state.

1 Introduction

For the modeling of the semiconductor transport, the quantum drift-diffusion (QDD)
model has been introduced as a generalization of the classical drift-diffusion model [1].
This model is suited to incorporate quantum confinement and tunneling effects in scaled
semiconductor devices. An iterative method and numerical schemes of the stationary
QDD model have been developed to realize the accurate prediction of such physical
phenomena [2]-[4]. In this work, we propose a numerical method for the transient QDD
model with emphasis on adaptive time discretization. The adaptive time step algorithm
is designed by calculating the free energy of the system.

2 A Transient Quantum Drift-Diffusion Model

Considering only electrons, the QDD model is described as
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whereϕ is the electrostatic potential,n the electron density, andϕn the generalized
quasi-Fermi level.R is the recombination rate,ε the dielectric permittivity,q the elec-
tronic charge,k the Boltzmann constant,T the temperature,C the ionized impurity
density. µn is an electron mobility,bn = h̄2/(12qm∗n), h̄ the Planck constant,m∗

n the
effective mass for the electrons, andni is the intrinsic carrier density.
The free energy form of the system is important to determine the asymptotic behavior
of the solutions of the time dependent problem. In order to understand the asymptotic



behavior of the solutions to the stationary state, we can define the derivative of the
relative free energyW as follows:

H(t) =
dW
dt

=
∫

Ω
Jn ·∇(ϕn−ϕ∗n)dx (4)

whereϕ∗n is a stationary solution andJn denotes the current density. An important prop-
erty satisfied by the QDD model is the entropy dissipation and hence the adaptive time
step algorithm for time discretization can be designed by calculating the free energy of
the system.

3 Discretization

For time discretization, we apply a backward Euler scheme. By employing an expo-
nential transformation of variablesS=

√
n =

√
ni exp( qu

kT ) in (3), space discretization
is performed in terms of the variables(ϕ ,u,n) [3]. Then we obtain high-order conser-
vative schemes to the QDD equation:
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whereΦ = ϕ + γn and Λi =
∫ xi+1/2

xi−1/2 Sdx. τk = tk− tk−1 > 0 is the time step. All of
potentials are scaled by the Boltzmann voltage.

4 Adaptive Time Step Control

An effective way for the time step control is to look at the ratio of consecutive gradients
of the free energy as follows:

θ =
Wk+1−Wk

Wk−Wk−1
=

∫ tk+1
tk H(t)dt

∫ tk
tk−1

H(t)dt
. (7)

If θ is near 1 then the system approaches the stationary state and hence the time step
size can be increased. Ifθ is far from 1 then the system is dynamically changed and
hence the step size is kept to be constant. An adaptive time step algorithm is constructed
as

τk+1 = α(θ)τk (8)

α(θ) =





1 θ ≤ 1− ε
1.2 −ε ≤ |θ −1| ≤ ε
1 θ ≥ 1+ ε

. (9)



In (7) H(t) is approximated by the Lagrange interpolating polynomialP(t). As τk+1 =
τk, θ at t = tk+1 is predicted by usingP(t) in (7). Then,α(θ) is estimated in (9). Using
(8), the next time stepτk+1 is corrected. The initial time step is set to the minimum step
size due to the large variation ofW at the initial stage. The simulation is performed for
different n+-n-n+ structures. The n+ and n doping concentration is5×1017 cm−3 and
2×1015 cm−3, respectively. Fig. 1 and 2 show the evolution of adaptive time step. The
results indicate the nonuniform step sizes and different evolutions of time step between
short and long channel devices.
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Figure 1: Evolution of adaptive time step
for the n+-n-n+ device withl = 0.1 µm.
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Figure 2: Evolution of adaptive time step
for the n+-n-n+ device withl = 0.3 µm.

5 Numerical Results

The resulting algorithm was validated in n+-n-n+ structures. Fig. 3 shows electron
density distributions for the n+-n-n+ device with the channel length of0.1µm, calcu-
lated by different time step algorithms. Fig. 4 shows the derivative of the free energy
of the system. In both cases, our proposed algorithm represents the exact solutions
calculated using the fine time step of0.01 psec. As shown in Fig. 5 and 6, the adap-
tive time discretization exhibits the exact results at different drain voltages and at short
and long channel devices. The number of time steps required to reach the stationary
state at different devices are summarized in Table 1. It is found that the adaptive time
step algorithm significantly reduces the total number of time steps required to reach the
stationary state.

6 Conclusion

The adaptive time step algorithm for the transient QDD model has been newly devel-
oped by introducing the derivative of the free energy of the system. The new algorithm
significantly reduces the total number of time step required to reach the stationary state.
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Figure 3: Electron density distributions
calculated by different time step algorithms.

-160000

-140000

-120000

-100000

-80000

-60000

-40000

-20000

 0

 20000

 0  2e-13  4e-13  6e-13  8e-13  1e-12

H
(t)

 [J
/c

m
2 s]

TIME [sec]

∆t = 0.01 [psec]
∆t = 0.1 [psec]

This work

Figure 4: The derivative of free energy cal-
culated by different time step algorithms.
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Figure 5: The derivative of free energy at
different drain voltages.
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Figure 6: The derivative of free energy at
short and long channel devices.

l = 0.1 [µm] l = 0.2 [µm] l = 0.3 [µm]
time The number time The number time The number

[p sec] of time step [p sec] of time step [p sec] of time step
∆t = 0.01 0.89 89 2.5 250 4.85 485
∆t = 0.1 0.61 7 1.31 14 2.41 25
This work 0.924 48 2.62 52 5.13 54

Table 1: The number of time steps required to reach the stationary state.l is the channel
length of the n+-n-n+ device. The drain voltage is0.1 V.
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