
824 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 7, JULY 1995 

Massively Parallel Computation Using 
a Splitting-Up Operator Method for 

Three-Dimensional Device Simulation 
Shinji Odanaka 

Abstract- This paper presents a new parallel algorithm 
and performance results of iterative solution methods for 
three-dimensional MOSFET simulation with Gummel's method. 
A splitting-up operator method is proposed for incomplete 
factorization of sparse matrices arising from semiconductor 
device equations, suitable for parallel computations. This method 
is combined with the conjugate gradients and BiCGSTAB 
procedure to obtain a new parallel version of the iterative 
solution methods. Natural parallelism is realized by developing 
the solution method according to the natural ordering. In 
large-scale simulations of greater than 100000 grid nodes, the 
high parallel efficiency level over 90% can be achieved using a 
new-type massively parallel computer: ADENART with up to 
256 processors. The real performance of the solution methods 
is superior to those calculated by the vectorized version of 
the ICCG and ILUBiCGSTAB methods using a vector-type 
supercomputer. 

I. INTRODUCTION 

ECENT ADVANCES in VLSI technology and manu- R facturing are creating the need of the three-dimensional 
simulation, physics-based modeling, and Technology CAD de- 
sign environment. High-performance computing makes these 
computaiion-intensive numerical simulations practical. The 
vector-type supercomputer had an impact on the develop- 
ment of three-dimensional process and device CAD softwares 
[ l ] ,  [2]. To achieve the high performance of the vector- 
type supercomputer, the vectorized versions of preconditioned 
iterative methods were developed by using the hyperplane 
ordering. In the iterative solution method for process and 
device simulations, the Incomplete Cholesky Conjugate Gra- 
dients (ICCG) algorithm [3] has been widely used for solving 
symmetric matrix problems and two algorithms, Incomplete 
LU BiConjugate Gradients (ILUBiCG) [4] and Incomplete LU 
Conjugate Gradients Squared (ILUCGS) [5] ,  have been used 
for solving nonsymmetric matrix problems. 

Another approach to the computation-intensive numerical 
simulations is to develop iterative solution methods using 
massively parallel computers. In general, parallel versions of 
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the solution method are realized by subdividing the matrix 
problem into disjoint blocks of equations and assigning each 
processor the task of handling one or more blocks. In an 
earlier work of device simulation using parallel computation, 
the nested dissection ordering [6] was applied to the ICCG 
method for solving the Poisson equation in three-dimensions 
on the Intel hypercube [7]. Red-black ordering [8] was used 
in a regular grid problem to realize the parallel computation 
of the ILUCGS method on the Connection Machine [9]. 
However, the parallel efficiency and the convergence behavior 
of the iterative solution method strongly depend on the matrix 
partitioning scheme and the number of blocks [lo], [ 111. In 
such matrix problems, the ordering modifies the quality of 
the incomplete factorization preconditioner, which results in 
change of the convergence behaviors of the preconditioned 
algorithms. Even in irregular grid problems the parallelization 
has been attempted by solving the matrix problem, where the 
rows of the matrix are reordered [12]. In addition, it should 
be noted that the serial nature of computation in incomplete 
LU decomposition remains in both regular and irregular grid 
problems. To overcome the matrix problem with ordering 
for parallelization, a grid-based parallelization of the iterative 
solution method, which utilizes some regularity of the grid 
structure, should be discussed. Considering the serial nature 
of incomplete LU decomposition, incomplete factorization 
preconditioners suitable for parallel computations should also 
be investigated. 

This paper presents a new parallel algorithm and per- 
formance results of the iterative solution method for 
three-dimensional device simulations on a massively parallel 
computer: ADENART (Alternating Direction Editing Nexus 
ARray sysTem). A grid-based parallelization of iterative 
solution method is described. A splitting-up operator method 
is proposed as an incomplete factorization preconditioner suit- 
able for parallel computations. This method is combined with 
the conjugate gradients (CG) and BiCGSTAB acceleration to 
obtain a new solution method. In Section 11, the preconditioned 
iterative solution method is described on the basis of the 
splitting-up operator method. An extension to irregular grid 
is briefly discussed. Section 111 gives an overview of the 
ADENART computer. Section IV realizes a straightforward 
implementation of the parallel algorithms according to the 
natural ordering. Section V discusses performance results 
for the new parallel version of the solution method using 
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a three-dimensional device simulator: SMART-I1 [ 131. The 
convergence behavior and computational performance are 
investigated by using three-dimensional device simulations 
for a scaled 0.25 pm LDD n-MOSFET. The results are 
compared with those calculated by the vectorized versions of 
ICCG and ILUBiCGSTAB methods on Fujitsu VP-200. The 
parallel efficiency of the new solution method is discussed. 

11. SPLITTING-UP OPERATOR METHOD 
AS INCOMPLETE FACTORIZATION 

We consider a linear system Au = k ,  which stems from 
the seven-point finite difference discretization of drift-diffusion 
device equations over a rectangular grid in three dimensions: 

( A U ) i j k  = a i j k u i j k  - b i j k U i - l j k  - C i j k U i + l j k  - d i j k U i j - l k  

- e . .  21. .  t j k  a j f l k  - f i j k u i j k - 1  - g i j k u i j k f l .  (1) 

In the natural ordering, the coefficient matrix A has a super- 
block tridiagonal form where each super-block is a block 
tridiagonal matrix. Then the blocks are tridiagonal matrices. 
Each row of the matrix A has at most seven nonzero elements. 
By extracting essential parts of a typical row, the matrix A is 
written in the convenient form 

A = [(o: (0, - f i j k r  0), o)((o, - d i j k :  o), ( - b i j k ,  a i j k ,  - C i j k ) ,  

(0, - e i j k , O ) ) ( o ,  ( o , - g i j k , o ) > O ) ] .  (2) 

For the solution of Au = k ,  the iterative process with CG 
acceleration is described as 

C . ( u n + l - ~ n ) = - ~ ~ + , ( A ~ n - k )  ( n = 0 , 1 , 2 , . . . )  (3) 

where the matrix C is an approximate factorization of the 
matrix A and 7 is determined by the conjugate gradients (CG) 
acceleration [14]. Then the linear system Au = k has the 
same solution as 

(4) 

If the matrix A C - l  has a small condition number, the CG 
algorithm converges to a solution quickly. 

Since the coefficient matrix arising from the Poisson equa- 
tion in device simulation is symmetric and positive definite, 
the incomplete Cholesky (IC) decomposition has been succes- 
fully used as the preconditioning for the CG algorithm. The 
incomplete LU (ILU) decomposition is used for nonsymmetric 
matrices from the current continuity equations. In incomplete 
Cholesky and LU decompositions, the linear system Cz = T 

can be solved much easier than Au = k .  The preconditioning, 
however, includes a serial computation of triangular back- 
wardforward substitutions. For vector-type supercomputers 
the high speed computation of such a serial computation was 
realized using the list vector method on the basis of a so-called 
hyperplane defined by all triples (2: j ,  k )  for which i + j + k = 
constant [ 151. 

High-performance computing of the iterative solution 
method on massively parallel computers is more complicated. 
In general, the parallelism for matrix solution methods is 
realized by subdividing the sparse matrix into disjoint blocks 
of equations and assigning each processor while minimizing 

( A C - l )  . Cu = k .  

the communication overhead. In an earlier work [7], a parallel 
version of the ICCG method was developed on the basis of 
the nested dissection ordering to solve the Poisson equation 
in three-dimensions using the Intel hypercube. The matrix 
was partitioned into disjoint blocks and separators. However, 
the parallel efficiency decreases as the number of processors 
increases and hence the efficiency was reduced to 77.5% for 
the regular grid problem even when using only 16 processors. 
Parallelization of the preconditioned iterative method was 
attempted to solve a full set of drift-diffusion device equations 
in the rectangular grid [9]. Red-black ordering was applied 
to realize the parallel computation of the ILUCGS for the 
Connection Machine. The performance of the solution method 
was estimated to be 120 Mflops on a full 65536 b serial 
processors. However, this approach suffers from a degradation 
in the convergence rate of the preconditioned iterative method. 
The ordering was modified to improve the convergence 
property in the CGS method with the red-black ordering 
[ l l ] .  Although for the nonsymmetric matrix the minimum 
degree ordering with multiple elimination [ 161 is proposed, 
this ordering has not been applied to the device simulation. 
Recently, Pommerell et al. further developed parallelization 
of ICCG and ILUCGS applied to irregular finite-element 
grids using a distributed-memory parallel computer [ 121. In 
numerical experiments of device simulation, a degradation in 
the convergence rate of the multicolor preconditioned iterative 
method is reported [17]. A recursive spectral approach for 
partitioning is developed to achieve good load balancing 
and to minimize the communication overhead [18]. The 
expense of partitioning operation should be discussed for 
device simulations [ 191. 

We realize a natural parallelism by developing a new 
preconditioned iterative method according to the natural or- 
dering, which is used for sequential machines. To achieve the 
high-level parallelism of this method on a massively parallel 
computer, a decomposition of “a product type” significantly 
different from the incomplete Cholesky and LU decomposi- 
tions is proposed. Such a product type decomposition in the 
two-dimensional case has been proposed as an incomplete 
AD (Alternating Direction) decomposition for the symmetric 
matrix [20]. This approach is extended to the symmetric and 
nonsymmetric matrices in the three-dimensional problem. The 
incomplete factorization of A is defined by a product of three 
super-block tridiagonal matrices X ,  Y ,  and 2 as follows: 

c = X Y Z ,  (5) 

where the matrices X ,  Y ,  and 2 are given by 
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C = X Y Z  is the natural “splitting” of C into its one- 
dimensional components. From the product X Y Z ,  the incom- 
plete factorization C can be expressed in the form 

where D is a diagonal matrix and D + A,, D + Ay, and 
D + A, are super-block tridiagonal matrices. These matrices 
are represented by the same form as (2). 

This incomplete factorization represents a generalized 
splitting-up operator method [ 151, which includes the 
alternating direction implicit (ADI) method introduced 
by Douglas, Peasman, and Rachford. The factorization 
is consistent with the computer architecture of the 
ADENART computer as mentioned later. For the coefficients 

simple and effective incomplete factorization of A [21]: 
a : j k :  P i j k ,  T i j k ;  6 i j k :  E ; j k ,  [ ; j k ,  and q i j k  We further get a 

p. .  - b . .  a ? j k  = a i j k ,  z j k  - a l k ,  Y i j k  = c i j k ,  & j k  = d i j k ,  

E i j k  = e i j k ,  { i j k  = f i j k :  and q i j k  g i j k .  

Then, the incomplete factorization G is written as 

c = ( D  + A , ) D - ~ ( D  + A , ) D - ~ ( D  +A,)  (9) 

where A,, A,, and A,  are off-diagonal matrices corre- 
sponding to partial differences in z-, y-, and z-directions, 
respectively. In the incomplete factorization, there are nonzero 
elements filled-in where corresponds to zero elements of A. 
These terms are given by two types of nonzero elements, bc/a 
and b c d / a 2 .  Fill-in is ignored in the incomplete factorization. 

The solution of Cz = T is easily calculated by solving biock 
tridiagonal systems in the z-, y-, z-directions, respectively: 

The iterative solution method is developed by using the 
new incomplete factorization. When the matrix A is positive 
definite and symmetric, the CG algorithm is used for increasing 
the convergence rate of the splitting-up operator method. For 
the nonsymmetric matrix, this method is combined with the 
variants of BiCG acceleration. Recently, the Bi-CGSTAB has 
been proposed as a new method by van der Vorst [22]. A 
number of parameters in the algorithm are investigated in 

the device simulations to further improve the convergence 
behavior of this method [23]. 

The right-preconditioning of Au = IC leads to the following 
scheme for preconditioned Bi-CGSTAB. In this case, the 
residual corresponds to the vector T of the original system. 

uo is an initial guess. Let TO = k - AUO and PO = T O ,  then 

Here the parameter w is defined according to Bi-CGSTAB-P 
in [22]. This method requires two extra inner-products when 
compared with the CGS method, but the convergence behavior 
is very attractive. The splitting-up (SP) methods with the 
CG and BiCGSTAB algorithms (SPCG and SPBiCGSTAB) 
are easily parallelized on the new-type massively parallel 
computer: ADENART. 

The SP method may be applied to other methods, which has 
been proposed to allow for modeling of the complex device 
geometry. The geometry modeling is strongly related to the 
grid generation problem. In MINIMOS-5 [24], the box inte- 
gration method is extended to allow nonplanar interfaces in the 
rectangular grid. The SP method discussed in the rectangular 
grid is directly applied to this approach. Another approach is 
to use the elliptic grid generator which was first developed by 
Thompson [25]. The recent several works [26], [27] realize the 
complex device geometry using the variants of the boundary- 
fitted curvilinear coordinate system. It is sure that the SP 
method is basically effective in parallelizing the solution on 
finite-element grids resulting from the boundary-fitted curvi- 
linear coordinate system. In fact, the present method can be 
tailored to the grid-based parallelization of the finite element 
method using tetrahedron elements of Friedrichs-Keller type 
on irregular grids [28]. Such a two-dimensional triangulation 
on the curvilinear coordinate system is shown in Fig. 1 as an 
example. Then the resulting discretization is a linear system 
with a regular 7-diagonal structure for the two-dimensional 
case and 15-diagonal structure for the three-dimensional case. 
Instead of the coefficient matrix with full lines, those with only 
essential 5-diagonal lines in two dimensions and 7-diagonal 
lines in three dimensions are dedicated to an incomplete 
factorization. In such cases, the complexity of implementation 
is identical to the regular implementation. 

111. ADENART COMPUTER ARCHITECTURE 

The ADENART is a massively parallel MIMD (Multiple- 
Instruction Multiple Data) computer [29], [30]. The physical 
system has been realized by using a three-dimensional network 
and two-dimensional array of processors [3 11. The machine 
used here has 256 Processing Element (PE’s) and each PE 
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Fig. 2. An illustration for three-dimensional simulation using the 
ADEN ART. 

q -axis 

Fig. 1. Triangulation on the curvilinear coordinate system in two dimensions. 

consists of a 64-b floating point processor [32] and 2 Mbyte 
of local data memory. First-in-first-out Buffer Memory Unit 
(BMU) elements of 16 x 16 are arranged in 16 layers, 
respectively, which are used for the data transfer. The BMU 
elements are placed on all cross points of row and column. 
Each processor is connected to each row and column, and 
can access the BMU elements on such row and column. The 
network is designed to transfer from the data array shared 
among processors seeing BMU cube in a direction to those 
doing alternatingly in another direction. The data transfer 
between different situations of the processors is performed 
through the BMU elements: 

P E ( s , t )  * BMU(r,s , ( t ) )  * P E ( t , r ) ,  
P E ( t , r )  * BMU(u, t , ( r ) )  * PE(r,u).  

The first expression means that there is a tth buffer memory 
layer ( B ( r , s , ( t ) ) : ~ , s  = 1 ,2 , . . -16 )  between a pair of tth 
row of processors, (PE (s, t ) ;  s = 1 ,2 , .  . .16) and tth column 
of processors, (PE ( t ,  r ) ;  T = 1 , 2 , .  . . 16). The network is so 
powerful to allow the data transfer between any pair of two 
processors by using the transfer operation twice, as seen in 
the above two expressions. 

An illustration for a three-dimensional simulation using the 
ADENART is shown in Fig. 2. The square OABC presents 
the two-dimensional array of 256 processors. The simulation 
is performed by the multiple use of the physical system. The 
complex of processors rotates against the fixed space axes 
and takes three situations: a) row position in the z-direction 
and column position in the y-direction; b) row position in 
the y-direction and column position in the z-direction; and c) 
row position in the z-direction and column position in the z- 

direction. Each PE has responsibility for serial computations 
in the 2-, y-, and z-directions. In each computation step, the 
PE updates data corresponding to one of three directions and 
exchanges these data between PE’s through BMU elements. 
Each PE receives the data as other directional data and 
computes the new directional data. All PE’s repeat these 
operations by changing directions, in parallel. 

Iv. IMPLEMENTATION OF PARALLEL ALGORITHMS 

The iterative process of SPCG and SPBi-CGSTAB meth- 
ods involves serial computations as well as the ICCG and 
ILUBi-CGSTAB. The major step is a computation of back- 
wardforward substitutions to solve the block tridiagonal sys- 
tems (loa)-( 10c). The ADENART computer more naturally 
realizes the high-level parallelism of this calculation in the 
SP method. In fact, the backwardforward substitutions are 
performed with the high-level parallelism in z-, y-, and z- 
directions, respectively. Since the SP method is implemented 
with the natural ordering on the ADENART computer, the 
parallel version of the iterative solution method exhibits the 
same convergence behavior as that on the sequential machine. 

The ADENART supports parallel programming language 
ADETRAN, which is an expanded version of FORTRAN- 
77 [33]. It allows three types of data expression z ( i > j , k )  
according to three situations taken by processors as shown 
in Fig. 2, which are expressed as the three-dimensional array 
x ( z , / j , k / ) ,  z ( z / , j , / k ) ,  and z ( / z , j / , k ) .  These are z-, y-, 
and z-direction variables in y-z, 2--2, and x-y PE planes, 
respectively. The form shown at the bottom of the page 
expresses the parallel computing of the backward/fonvard 
substitutions in the y-direction (lob), where a pair of pdo and 
pend assigns a parallel computation paragraph. As shown in 
Fig. 3, the real 2-z plane composed of the L x N grid nodes 
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is covered with several sections corresponding to the 16 x 
16 PE array. The parallel command “pdo” allows the parallel 
computing over i and k. A serial computation is performed 
along j .  As a result, the serial computation for one-dimensional 
processing is concurrently performed by 256 processors. To 
calculate the backwardforward substitutions in the z-direction 

, (~OC), the Alternating Direction Execution (ADE) operation 
is needed for the data transfer between the processors. This 
operation is expressed by the following form using the parallel 
command “pass.” 

p a s s i = l , L , j = l , M , k = l , N  

pend 
z k ( / i , J / , k )  = z j ( i / , j , / k )  

This means that the corresponding processors exchange the y- 
direction data to the z-direction data. The backwardforward 
substitutions in the z-direction are followed after the ADE 
operation. The command “pass” is executed twice to obtain 
the solution of Cz  = T and then the communication cost is 
incurred. In the case of 131072 grid nodes, the communication 
cost was 9.6% of the total execution time for solving Cz  = 
T. The result indicates that the ADE operation significantly 
reduces the communication overhead in the massively parallel 
algorithm. 

Moreover, the CG and BiCGSTAB algorithms involve serial 
computations of the matrix-vector and inner products. The par- 
allel computation of the matrix-vector product is obtained by 
the same approach as the backwardforward substitutions. The 
parallel programming is as shown at the bottom of the page, 
where a ,  b, e, d, e ,  f, g are the coefficients of the matrix A .  p 
is the search vector in the CG algorithm. The command “pass” 

Fig. 3. 
case, a serial computation is performed along the y-direction. 

Schematic explanation of parallel computing in the 2-z  plane. In this 

is executed twice to calculate the matrix-vector product. In this 
case, the one-dimensional processing and data transfer can be 
done concurrently using the feature of the three-dimensional 
network. In the case of 13 1072 grid nodes, the communication 
cost is reduced to 5.2% of the total execution time for the 
matrix-vector product. The straightforward implementation of 
inner products is also achieved using the parallel commands 
pdo and pass. 

v. RESULTS AND DISCUSSIONS 
The parallel versions of the SPCG and SPBi-CGSTAB 

methods were implemented into a three-dimensional device 
simulator: SMART-I1 [ 141. The convergence behavior and 
the computational performance were investigated by three- 
dimensional drift-diffusion device simulations without includ- 
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ing an electron temperature model in SMART-11. Poisson's 
equation is discretized using the usual seven-point central dif- 
ference approximation in the nonuniform spacing. In discretiz- 
ing the continuity equations, the Scharfetter and Gummel's 
scheme [34] is used. The coupled equations are solved with the 
Gummel iterative method [35] to determine the electrostatic 
potential $J, and the electron and hole densities n and p .  In 
SMART-11, the model is mainly developed to design CMOS 
devices and DRAM cells [36]-[38]. In MOSFET simulations, 
the Gummel iterative method is effective while the Newton 
method requires an additional computation cost to obtain the 
initial guess for the Newton loop. 

Fig. 4(a)-(c) shows relative residual norms llAu - 
lc112/111c1)2 versus iteration for the SPCG and SPBiCGSTAB 
methods. The simulated device is a scaled 0.25 pm LDD n- 
MOSFET having 7 nm thick gate oxide and sidewall spacer of 
0.15 pm. The LDD regions have a doping of 2.0 x 10l8 cmP3 
and the channel doping concentration reaches 2.0 x lo1' cmP3. 
The mobility model used in the simulation includes the normal 
electric field dependence in an inversion layer [ 141 together 
with the doping and parallel electric field dependences taken 
from Scharfetter and Gummel's expression [34]. The bias 
conditions were V, = 2.0 V and Vo = 2.0 V. The results 
are compared with those of ICCG and ILUBiCGSTAB. When 
compared with the IC and ILU decompositions, the SP method 
exhibits the small increase of 20-30% in the number of 
iterations. The method, however, provides stable convergence 
and high-level parallelism of the iterative solution method. 
Also, the number of iterations for solving the electron and hole 
continuity equations, which is a major part of computation 
time, is significantly reduced by the BiCGSTAB algorithm. 
The convergence rate of the BiCGSTAB with the SP method 
is superior to that of the ILUBiCG method. 

Fig. 5(a) and (b) compares the convergence behaviors of 
BiCG, CGS, and BiCGSTAB with the SP method. It is 
found that the convergence behaviors of BiCG, CGS, and 
Bi-CGSTAB with the SP method are very similar to those 
with the incomplete LU factorization as the preconditioning. 
Both BiCG and CGS methods exhibit many local peaks of 
residual in the convergence history. Although the oscillations 
of residual in CGS are larger in amplitude than that in BiCG, 
the convergence of CGS is faster than that of BiCG. The Bi- 
CGSTAB with the SP method converges much more smoothly 
than the CGS and BiCG as well as ILUBiCGSTAB. These 
results were obtained from the MOSFET simulations with 
Gummel iterative method. The convergence property of the 
SP method for Newton matrices should be further investigated 
for bipolar simulations. 

The real computational performance of the SPCG and 
SPBi-CGSTAB methods on the ADENART-256 is shown in 
Fig. 6(a) and (b). CPU time per iteration is plotted as a 
function of the number of grid nodes. The number of grid 
nodes ranges given Nx, Ny, and N z  from 64 x 2 x 64-64 x 
16 x 64 and 64 x 18 x 64-64 x 32 x 64. The results are also 
compared with those calculated using the vectorized versions 
of the ICCG and ILUBiCGSTAB methods on a vector-type 
supercomputer Fujitsu VP-200 (the peak performance is 533 
Mflops). The vectorized rate of both solution methods was 

' 0 5 10 15 20 25 30 
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(a) 

10' 
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10'' 

10'' 
l o 4  
10" 
lod 
10.' 
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10' 
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10'" 
1 0 'I2 

1o.u 
0 10 20 30 40 50 60 

ITERATION 

(b) 

0 10 20 30 40 50 60 70 BO 90 100 

ITERATION 

(C) 

Fig. 4. Relative residual versus iteration for the SPCG and SPBiCGSTAB 
methods. (a) Poisson equation. (b) Electron continuity equation. (c) Hole 
continuity equation. The results are compared with those calculated using 
the ICCG and ILUBiCG methods. The simulated device structure is a scaled 
0.25 p m  LDD n-MOSFET. 

99.3%. The computation time on the vector processor is 
reduced to less than 1/32 of that on the scalar processor. As 
shown in Fig. 6(a) and (b), the high-speed computing of the 
SPCG and SPBiCGSTAB is realized by using the ADENART 
computer. The maximum parallel efficiency is achieved when 
all of N z ,  Ny, and N z  are multiples of 16. However, there 
is a jump in the CPU time for 64 x 18 x 64 grid nodes. This is 
because some processors are idle due to the multiple use of 16 
x 16 processors. In this case the load balancing is improved 
from that for 64 x 2 x 64 grid nodes. For the vector-type 
supercomputer the computation time is rapidly increased with 
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Fig. 5 .  Convergence behaviors of BiCG, CGS, and BiCGSTAB with the 
splitting-up method for solving (a) electron continuity equation and (b) hole 
continuity equation. 

increase of the number of grid nodes. It is found that in large- 
scale simulations of greater than 100000 grid nodes the real 
computafion speed of the new solution methods is superior 
to those on the vector-type supercomputer. The effective 
performance of SPCG and SPBiCGSTAB was 352 Mflops and 
339 Mflops on the ADENART computer, respectively. The 
results indicate that the new parallel version of the iterative 
solution method allows the practical use of massively parallel 
computation for the three-dimensional MOSFET simulations. 

The speedup achieved by the parallel version of the solution 
methods is shown in Fig. 7(a) and (b) for the fixed-sized 
problems of 65536 and 131072 unknowns. The dased lines 
show the ideal performance. The standard speedup is written 
as 

(12) ' ( P )  = CPU time using p processors. 

Then, the parallel efficiency is defined by E ( p )  = S ( p ) / p .  
For 256 processors, the SPCG and SPBiCGSTAB show the 
speedup of 222 and 223 and hence the parallel efficiencies are 
86.5 and 87.2%, respectively. In the case of 131072 unknowns, 
the parallel efficiencies reach up to 90.9 and 90.6% for the 
SPCG and SPBiCGSTAB, respectively. In both methods, the 
high efficiency level over 90% can be achieved even when 
using up to 256 processors. To achieve the maximum parallel 
efficiency in practical applications, all of N z ,  Ny, and N z  
are recommended to be multiples of 16. 

Sequential CPU time 

I 

1 L,// . , $ 8  

10' 10' 105 lo6 
l o o  

NUMBER OF GRID NODES 

(b) 

Fig. 6. CPU time per iteration of (a) SPCG and (b) SPBiCGTAB as a 
function of the number of grid nodes. The number of grid nodes ranges from 
64 x 2 x 64-64 x 16 x 64 and from 64 x 18 x 64-64 x 32 x 64. The results 
are compared with those calculated by the vectorized versions of ICCG and 
ILUBiCGSTAB using Fujitsu VP-200. 

VI. CONCLUSIONS 

The splitting-up CG and BiCGSTAB methods have been 
proposed to realize a grid-based parallelization of iterative 
solution methods for the three-dimensional drift-diffusion de- 
vice simulations. The splitting-up operator method allows the 
parallel computation according to the natural ordering, which 
is realized by the one-dimensional processing in the x-, y-, and 
z-directions. In the Gummel iterative method the Bi-CGSTAB 
with the splitting-up method converges much more smoothly 
than the other tested methods. The parallel versions of the 
splitting-up CG and BiCGSTAB methods provide a natural and 
high-level parallelism of iterative solution method using a new 
type of massively parallel computer: ADENART-256. In large- 
scale device simulation of greater than 100000 grid nodes, 
parallel efficiency level over 90% was achieved even when us- 
ing up to 256 processors. The real computational performance 
of the new solution method is superior to those calculated 
by the vectorized version of the ICCG and ILUBiCGSTAB 
methods on a vector-type supercomputer. 
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