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A High-Resolution Method for Quantum
Confinement Transport Simulations in MOSFETs

Shinji Odanaka, Senior Member, IEEE

Abstract—This paper describes a new discretization scheme
for quantum confinement transport simulations using a quantum
drift–diffusion model. A high-resolution scheme is constructed
by developing an exponential-fitting method with the slope lim-
iter in a class of conservative schemes to simulate the flow of
electrons with quantum confinement effects in MOSFETs. This
method is reinterpreted as a flux-limiter method that hybridizes
a low-order flux and a high-order flux into a single numerical flux.
The discretization method provides good approximations to the
density profile in the smooth regions and boundary layers of the
electron flow and allows high-resolution simulations of quantum
confinement transport in ultrasmall MOSFETs.

Index Terms—Numerical analysis, partial differential equation,
quantum theory, semiconductor device model, simulation.

I. INTRODUCTION

THE performance of ultrasmall MOSFETs available for the
future integrated system relies on quantum confinement

transport in narrow gate- or thin body-induced channels [1],
[2]. For the modeling of such MOS transport, the quantum
drift–diffusion (QDD) model, which is also called the density-
gradient model, has been introduced as a quantum-corrected
version of the classical drift–diffusion model with O(�2) cor-
rections to the stress tensor [3]. This model is a fluid dynamical
form of the Schrödinger equation and viewed as one of the hier-
archies of the quantum hydrodynamic models, which is derived
from a moment expansion of the Wigner–Boltzmann equation
adding a collision term [4]. The O(�2) terms of the QDD model
allow quantum confinement transport simulations in MOSFETs
and represent the smooth regions and boundary layers of the
electron flow in the channels. Nonlinear discretization schemes
have been proposed for numerical approximation of solutions
to the QDD equation [5]–[7] to achieve high computational
capability of electrical characteristics. Recently, Tang et al. [8]
pointed out that the numerical solutions obtained by a nonlinear
discretization scheme, which is developed in [5] and [6], are
sensitive to the boundary conditions at the silicon/oxide inter-
face while giving high accuracy in smooth regions of the flow
[8]. This is a major concern to achieve good approximations to
the flow of electrons with quantum confinement effects.

In this paper, we describe a high-resolution method for
quantum confinement transport simulations in MOSFETs on
the basis of our previous work [7], which provides a general
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procedure that produces low-order and high-order conservative
schemes to the QDD equation. A high-resolution scheme is
constructed by developing an exponential-fitting method with
the slope limiter in a class of conservative schemes. The dis-
cretization scheme is evaluated for carrier transport simula-
tions with quantum confinement effects in a MOSFET. The
spurious profile arising in the boundary layer is suppressed
by the new discretization method. Section II discusses a QDD
model for numerical simulations of quantum confinement trans-
port. Section III describes a new discretization scheme to the
stationary QDD equations, which is constructed by an
exponential-fitting method with the slope limiter. This method
is reinterpreted as a flux-limiter method that hybridizes a low-
order flux and a high-order flux into a single numerical flux. In
Section IV, the slope limiter for the new discretization scheme
is designed by numerical experiments. The resulting scheme is
validated in the electron density distributions of a MOSFET,
comparing with those calculated from the Schrödinger equation
coupling with Poisson equation.

II. QDD MODEL

The QDD model is derived as a quantum-corrected version of
the classical drift–diffusion model, introducing the generalized
chemical potential form that is related to the density and its
gradient [9]. Assuming Boltzmann statistics, the generalized
chemical potentials ϕn and ϕp are written as

ϕn = ϕ− kT

q
ln
(

n

ni

)
+ γn (1)

and

ϕp = ϕ +
kT

q
ln
(

p

ni

)
− γp (2)

where n and p are the electron and hole densities, ϕ is the
electrostatic potential, ni is the intrinsic density, k is the
Boltzmann’s constant, q is the electronic charge, and T is
the carrier temperature. A form of the quantum potentials γn

and γp in terms of the electrons and holes was derived from
O(�2) corrections to the stress tensor [3], i.e.,

γn =2bn
∇2

√
n√

n
(3)

γp =2bp

∇2√p
√

p
. (4)
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The density-gradient coefficients for electrons and holes were
identified by bn = �

2/(12qm∗
n) and bp = �

2/(12qm∗
p), respec-

tively, where m∗
n and m∗

p are effective masses for the electrons
and holes, respectively, and � is the Planck’s constant. In this
case, the form of the quantum potential is different by a factor
of 1/3 from the Bohm potential [10].

The governing equations for the electrons and holes in a
semiconductor then become

ε∆ϕ = q(n− p + N) (5)

−2bn∇2Sn + γnSn =0 (6)

∇(µnn∇ϕn) + R =0 (7)

−2bp∇2Sp + γpSp =0 (8)

−∇(µpp∇ϕp) + R =0 (9)

where ε is the electric permittivity, µn and µp are electron
and hole mobilities, respectively, N is the ionized impurity
density, and R is the recombination rate. Sn and Sp are the
root densities

√
n and

√
p, respectively. By introducing the

generalized chemical potentials, the current continuity equa-
tions for the electrons and holes are split into the two second-
order differential equations, respectively. In a simulation region
Ω, the QDD equations are solved, supplementing appropriate
boundary conditions on a boundary ∂Ω.

In our previous work [7], we constructed a multidimen-
sional discretization scheme to the QDD equations, emplo-
ying an exponential transformation of the root densities
Sn =

√
nie

u and Sp =
√

nie
v , where u = (ϕ + γn − ϕn)/2

and v = (ϕp + γp − ϕ)/2, respectively. To achieve a numerical
advantage, (6) was replaced by the equivalent form

−bn∇(Sn∇u) + Snu =
Sn

2
(ϕ− ϕn) (10)

where all of potentials are scaled by the Boltzmann voltage.
A similar expression is obtained for the holes. The nonlinear
equation is solved subject to the boundary conditions for the
potential u. As a result, it is possible to ensure the positivity
of the root density Sn by the uniform bound on the solution
of (10). The boundary condition at contacts is given by u =
ϕb/2, assuming γn = 0 at ohmic contacts, where ϕb is the
built-in voltage. At open boundaries, the normal derivative
vanishes, i.e., ∂u/∂ν = 0. The boundary condition of u on the
silicon/oxide interface is given by a small but nonzero value
of the carrier density. The zero value of the carriers at the
interface is incompatible with the Boltzmann statistics. In fact,
this condition requires the potential u at the interface to tend to
−∞ when the Boltzmann statistics is assumed.

III. HIGH-RESOLUTION SCHEME

The discretization of the QDD equation is performed for
(7) and (10), applying the finite-volume method to construct a
multidimensional scheme [7]. The numerical method developed
in [7] provides a general procedure that produces low-order and
high-order nonlinear schemes to the QDD equation.

Assuming that the flux F = Sn∇u in (10), we obtain by
Green’s formula over each computational cell Ωi,j that∫

∂Ωi,j

bnSn
∂u

∂ν
ds−

∫
Ωi,j

Snu dx = −1
2

∫
Ωi,j

Sn(ϕ− ϕn)dx

(11)

where the simulation region Ω is partitioned into computational
cells Ωi,j , i.e., Ω = ∪Ωi,j . ν denotes the unit outward normal
to the boundary ∂Ωi,j of the computational cell. In a staggered
Cartesian grid in two dimensions, where the computational cell
is rectangular, and the variables ϕ, ϕn, u, and Sn are defined
at cell centers and the numerical flux F is defined at cell
interfaces, we obtain a discrete form of (11), i.e.,

ajbn(Fi+1/2,j − Fi−1/2,j)

+ aibn(Fi,j+1/2 − Fi,j−1/2) − ui,j

yj+1/2∫
yj−1/2

xi+1/2∫
xi−1/2

Sn dx

= −1
2
(ϕ− ϕn)i,j

y1+1/2∫
yj−1/2

xi+1/2∫
xi−1/2

Sn dx (12)

where ai and aj are the cell sizes of the computational cell Ωi,j .
To find Fi+1/2,j at cell interfaces, integrating the flux F over
the interval [xi, xi+1], an approximation Fi+1/2,j yields

Fi+1/2,j =
ui+1,j − ui,j∫ xi+1

xi

dx
Sn

. (13)

A similar expression is obtained for Fi−1/2,j , Fi,j−1/2,j , and
Fi,j+1/2. Substituting in (12) the average fluxes Fi±1/2,j and
Fi,j±1/2 leads to a class of conservative schemes [11].

In this case, the accuracy of the numerical flux depends on
the explicit integration of the function Sn in (13), i.e.,

xi+1∫
xi

dx

Sn
=

xi+1∫
xi

e−u dx (14)

and hence the explicit integration method for the function Sn

leads to a procedure that produces low-order and high-order
conservative schemes.

The piecewise constant representation of the potential u on
the interval [xi, xi+1] leads to a low-order flux FL at the cell
interfaces. By interpolating linearly between the two grids, the
low-order flux FL is expressed as

FL =
1

hi+1
exp

(
ui+1,j + ui,j

2

)
(ui+1,j − ui,j)

=
1

hi+1

√
Sni+1,jSni,j(ui+1,j − ui,j)

=
1

hi+1

√
Sni+1,j/Sni,j

×B (ln(Sni+1,j/Sni,j)) (Sni+1,j − Sni,j) (15)
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where hi+1 = xi+1 − xi. B(·) is the Bernoulli function. A
similar expression is obtained by taking i− 1, j − 1, and j + 1.
A substitution of the numerical fluxes FL into (12) results in a
low-order nonlinear scheme, which corresponds to a nonlinear
scheme developed in [5] and [6] if the numerical flux is rewrit-
ten in terms of the root density Sn [7]. For constructing high-
order schemes, we can approximate the numerical flux by the
piecewise-linear representation of u on the interval [xi, xi+1],
assuming that du/dx is constant on the interval [xi, xi+1], i.e.,

u =
ui+1,j + ui,j

2
+ σx

i+1,j

(
x− xi+1 + xi

2

)
. (16)

If we make the natural choice

σx
i+1,j =

ui+1,j − ui,j

hi+1
(17)

then the method results in a high-order numerical flux described
in [7], i.e.,

FH =
1

hi+1
exp(ui+1,j)B(ui+1,j − ui,j)(ui+1,j − ui,j).

(18)

Substituting in (12) the high-order fluxes yields a high-order
nonlinear scheme developed in [7]. The piecewise-linear rep-
resentation of u on the interval leads to an extension of the
Scharfetter–Gummel approach [12] to the QDD equation [7].
If we further limit the slope (17), i.e.,

σx
i+1,j =

ui+1,j − ui,j

hi+1
θx

i+1,j (19)

then we obtain a more general discrete form for the numerical
flux as follows:

Fi+1/2,j =
1

hi+1
exp

((
1 + θx

i+1,j

)
ui+1,j +

(
1 − θx

i+1,j

)
ui,j

2

)

× B
(
(ui+1,j − ui,j)θx

i+1,j

)
(ui+1,j − ui,j). (20)

A similar expression is obtained for Fi−1/2,j , Fi,j−1/2, and
Fi,j+1/2. It is worth while noting that the numerical flux is

Fi+1/2,j =
{

FL, if θx
i+1,j = 0

FH , if θx
i+1,j = 1. (21)

The numerical flux at the silicon/oxide interface is written as

FB =
2

hi+1
exp

((
1 + θx

i+1,j

)
uB +

(
1 − θx

i+1,j

)
ui,j

2

)

× B
(
(uB − ui,j)θx

i+1,j

)
(uB − ui,j) (22)

where the boundary potential uB = (1/2) ln(nB/ni), which
is scaled by the Boltzmann voltage, is given by a small but

nonzero value of the root density
√

nB =
√

nie
uB at the sili-

con/oxide interface.
An average of Sn in each computational cell is performed by

integrating the piecewise-linear representation of u by

u = ui,j +
∂u

∂x
(x− xi) +

∂u

∂y
(y − yj) (23)

where ∂u/∂x = const on the intervals [xi−1/2, xi] and
[xi, xi+1/2], and ∂u/∂y = const on the intervals [yj−1/2, yj ]
and [yj , yj+1/2], respectively. Then, after some calculation,
we have the following approximation:

Λi,j =

yj+1/2∫
yj−1/2

xi+1/2∫
xi−1/2

Sndx

=
1
4
eui,j


 hi

B
(

ui−1,j−ui,j

2

) +
hi+1

B
(

ui+1,j−ui,j

2

)



·


 hj

B
(

ui,j−1−ui,j

2

) +
hj+1

B
(

ui,j+1−ui,j

2

)

 . (24)

Substituting (20) and (24) into (12), we obtain a new nonlinear
scheme to (10) subject to the boundary conditions for u, i.e.,

aj

hi+1
bn exp

((
1+θx

i+1,j

)
ui+1,j +

(
1−θx

i+1,j

)
ui,j

2

)

×B
(
(ui+1,j−ui,j) θx

i+1,j

)
(ui+1,j−ui,j)

− aj

hi
bn exp

((
1+θx

i,j

)
ui,j +

(
1−θx

i,j

)
ui−1,j

2

)

×B
(
(ui,j−ui−1,j)θx

i,j

)
(ui,j−ui−1,j)

+
ai

hj+1
bn exp

((
1+θy

i,j+1

)
ui,j+1+

(
1−θy

i,j+1

)
ui,j

2

)

×B
(
(ui,j+1−ui,j)θ

y
i,j+1

)
(ui,j+1−ui,j)

− ai

hj
bn exp

((
1+θy

i,j

)
ui,j +

(
1−θy

i,j

)
ui,j

2

)

×B
(
(ui,j−ui,j−1)θ

y
i,j

)
(ui,j−ui,j−1)

−Λi,jui,j =−Λi,j

2
(ϕ−ϕn)i,j . (25)

The parameter θ can be considered as a slope limiter that pro-
duces low-order and high-order schemes to the QDD equation
automatically. This approach leads to a new numerical method,
i.e., an exponential-fitting method with the slope limiter. The
slope-limiter method has been introduced in the computational
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fluid dynamics as shock-capturing algorithms that produce
high-order accuracy on smooth solutions and sharp resolution
in the vicinity of steep gradients [13]. This method is reinter-
preted as a flux-limiter method, which hybridizes a low-order
flux and a high-order flux into a single flux [13].

The exponential-fitting method with the slope limiter is also
viewed as a flux-limiter method that hybridizes a low-order flux
and a high-order flux into a single flux. Expanding the Bernoulli
function and the exponential function in a Taylor series with
respect to ui+1,j − ui,j , we find from (20) that

Fi+1/2,j = FL + θx
i+1,j(FH − FL) + O

(
|ui+1,j − ui,j |2

)
.

(26)

This means that the slope limiter θ represents the flux limiter.
In a previous work [8], Tang et al. pointed out that the results

obtained by a nonlinear scheme [5], [6], which is derived from
the low-order flux in terms of the root density Sn (15), are
sensitive to the boundary conditions given by the extremely
small carrier density at the silicon/oxide interface [8]. Applying
the analysis of the problem, they proposed a mixed-difference
scheme in which the standard linear scheme is used in the
boundary layer (x ≤ 0.5 nm at the depth direction) and the
nonlinear scheme in the smooth regions in the channel [8].
The numerical scheme (25) developed here hybridizes low-
order and high-order schemes in terms of the potential u, which
are derived from (15) and (18). Although both schemes are
nonlinear, it is expected that a high-order scheme works well
in smooth regions of the electron flow, and a low-order scheme
behaves well near the silicon/oxide interface. In the numerical
scheme (25), the slope limiter θ should be near zero in the
boundary layer, whereas in the smooth regions of the flow, we
want θ to be 1. Then, the numerical flux F reduces to the low-
order flux FL near the silicon/oxide interface and to the high-
order flux FH in smooth regions in the channel automatically.
The actual hybridization between FL and FH requires a way for
choosing the slope-limiter function. It is possible to construct
some function for the slope limiter by numerical experiments,
as will be mentioned later.

For the discretization of the current continuity equation, (7)
is rewritten in terms of the Slotboom variable η = ni exp(−ϕn)
for the generalized chemical potential as

−∇(µne
Φ∇η) + R = 0 (27)

where Φ = ϕ + γn. The current density J = µne
Φ∇η is dis-

cretized in terms of the electron density, i.e.,

Ji+1/2,j =µni+1/2,j

ηi+1,j − ηi,j∫ xi+1

xi
e−Φdx

=
µni+1/2,j

hi+1
(B(Φi+1,j − Φi,j)ni+1,j

− B(Φi,j − Φi+1,j)ni,j) . (28)

This approach leads to the well-known Scharfetter–Gummel
scheme [12], i.e.,

aj

hi+1
µni+1/2,j (B(Φi+1,j − Φi,j)ni+1,j

− B(Φi,j − Φi+1,j)ni,j)

− aj

hi
µni−1/2,j (B(Φi,j − Φi−1,j)ni,j

− B(Φi−1,j − Φi,j)ni−1,j)

+
ai

hj+1
µni,j+1/2 (B(Φi,j+1 − Φi,j)ni,j+1

− B(Φi,j − Φi,j+1)ni,j)

− ai

hj
µni,j−1/2 (B(Φi,j − Φi,j−1)ni,j

−B (Φi,j−1 − Φi,j)ni,j−1)

= vol(Ωi,j)Ri,j . (29)

Finally, we obtain the full discretization schemes (25) and (29)
to the QDD equation.

IV. SIMULATION RESULTS FOR MOSFETS

The slope limiter for the numerical scheme (25) is designed
by numerical experiments, and the corresponding scheme was
validated in the electron density distributions of a MOSFET
having thin gate oxide thickness of 1.5 nm and high substrate
concentration of 1.0 × 1018 cm−3. The results are compared
with those calculated from the Schrödinger–Poisson system
including 30 subbands. For the simulations, the value of ef-
fective mass is given by a single parameter m∗

n = 0.26m0.
The nonuniform grid spacing is adapted to the location of
boundaries. The boundary data uB at the silicon/oxide interface
is given by the root density

√
nB =

√
nie

uB .
We can look at the dependence of the electron density

on the boundary data at the silicon/oxide interface to design
the slope-limiter functions. Fig. 1 shows the electron density
distributions obtained by the high-order nonlinear scheme with
different boundary conditions at the silicon/oxide interface. The
dependence of the electron density on the boundary data similar
to that Tang et al. reported in [8] is also represented in the high-
order nonlinear scheme. When the boundary condition at the
silicon/oxide interface is given by the small carrier density with√

nB ≤
√

10ni, the incompatible boundary condition induces
the spurious profile arising in the singular boundary layer.
If the carrier density more than 10

√
ni at the silicon/oxide

interface is given, the high-order nonlinear scheme gives good
approximations to the electron density distributions. The de-
pendence of the density profile on the grid spacing adjacent
to the silicon/oxide interface is shown in Fig. 2. Although
the spurious profile is improved by minimizing the cell size
adjacent to the silicon/oxide interface, the discrepancy of the
density profile remains in the boundary layer. Fig. 3 shows
the electron density distributions calculated using the low-order
nonlinear scheme with different boundary conditions. The low-
order scheme works well in simulating the electron density
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Fig. 1. Electron density distributions calculated using the high-order scheme
with different boundary conditions for a MOSFET having 1.5-nm gate oxide
thickness and uniform channel doping of 1.0 × 1018 cm−3. The root densities,
which give the boundary condition at the silicon/oxide interface, are plotted.

Fig. 2. Electron density distributions calculated using the high-order scheme
with different values of the grid spacing hmin adjacent to the silicon/oxide
interface.

distributions subject to the boundary condition given by the
small but not extremely small value of the electron density with
10−1√ni ≤

√
nB ≤

√
10ni at the silicon/oxide interface. At

the boundary condition given by the relatively large electron
density more than 10

√
ni, however, it is further found that the

low-order scheme gives poor convergence and poor accuracy in
smooth regions of the electron density distributions.

One simple and effective choice of slopes satisfying these
results is to define a limiter function on the silicon/oxide
interface as

θ(ω) =

{ 0, if ω ≤ 0
ω, if 0 < ω < 1
1, if ω ≥ 1

= max (0,min(1, ω)) (30)

Fig. 3. Electron density distributions calculated using the low-order scheme
with different boundary conditions for the same device as shown in Fig. 1. The
root densities, which give the boundary condition at the silicon/oxide interface,
are plotted.

Fig. 4. Electron density distributions calculated using the new discretization
scheme with different boundary conditions. The root densities, which give the
boundary condition at the silicon/oxide interface, are plotted.

where ω = uB/C. C is a constant value of ln 10. When ω = 1,
the boundary data uB = C, scaled by the Boltzmann voltage, is
given by

√
nB = 10

√
ni. In other simulation region, we set the

slope limiter θ to 1, and hence, the high-order scheme is used.
The results calculated by the new scheme (25) with the

slope-limiter function mentioned above are shown in Fig. 4,
comparing with those calculated from the Schrödinger–Poisson
system. The spurious profile arising in the boundary layer
of a MOSFET is suppressed. The new scheme provides a
high resolution of carrier transport simulations with quantum
confinement effects subject to the boundary conditions given
by a wide range of the carrier density at the interface.

V. CONCLUSION

A new discretization scheme to the stationary QDD equa-
tion has been constructed by developing an exponential-fitting
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method with the slope limiter in a class of conservative
schemes. The low-order and high-order schemes to the QDD
equation are produced automatically. This method can be rein-
terpreted as the flux-limiter method that hybridizes a low-
order flux and a high-order flux into a single numerical flux.
The discretization method provides good approximations to the
density profile in the smooth regions and boundary layers of
the electron flow and hence the new scheme allows high resolu-
tion of carrier transport simulations with quantum confinement
effects in ultrasmall MOSFETs.
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