
陰関数の微分

関数 f(x,y) = 0 から存在を定義される陰関数 y = g(x) に対し、その一階微分と二階微分の式を計算してく
ださい．

陰関数  によって定義される関数  の一階および二階微分を求めるには、陰関数定理
（または陰微分法）を用います。以下に手順とともに結果を示します。

前提

陰関数  によって  が定義されており、  は ,  について十分に滑らか（可微分）で、
（このとき局所的に  と書ける）とします。

一階微分

陰関数として定義される  の導関数は、両辺を  で偏微分して：

よって、

二階微分

さらに  で微分して、  を求めます。  であることを念頭に  を使って：

両辺の導関数を計算すると：

（ただし、  と仮定して）

これを  について解いて：

f(x, y) = 0 y = g(x)

f(x, y) = 0 y = g(x) f x y

f ​(x, y) =y  0 y = g(x)

y = g(x) x

​f(x, y(x)) =
dx

d
f ​ +x f ​ ⋅y y =′ 0

​​ = y (x) = − ​

dx

dy ′

f ​y

f ​x

x y (x)′′ y = g(x) y =′ − ​

f ​y

f ​x

​ f ​ + f ​ ⋅ y =
dx

d
( x y

′) 0

f ​ +xx f ​y +xy
′ f ​y +yx

′ f ​y +yy
′2 f ​y =y

′′ 0

f ​ =xy f ​yx

f ​ +xx 2f ​y +xy
′ f ​(y ) +yy

′ 2 f ​y =y
′′ 0

y′′
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また、先ほどの  を代入して明示的に書けば：

まとめ

一階微分：

二階微分：

必要であれば具体例でもお見せできます。

制約条件 r(x,y) = x^2 + y^2 - 2 = 0 のもとで関数 f(x,y) = y - x の極値を求めてください．

この問題は、制約付き最適化問題であり、ラグランジュ乗数法を用いて解くことができます。

問題の概要

目的関数（最適化対象）:

制約条件:

ラグランジュ乗数法の手順

ラグランジアンを定義します：

​​ = y (x) = − ​

dx2

d y2
′′

f ​y

f ​ + 2f ​y + f ​(y )xx xy
′

yy
′ 2

y =′ − ​

f ​y

f ​x

​​ = − ​

dx2

d y2

f ​y

f ​ − 2 ​f ​ + ​ f ​xx f ​y

f ​x
xy (

f ​y

f ​x )
2

yy

y =′ − ​

f ​y

f ​x

y =′′ − ​ または y =
f ​y

f ​ + 2f ​y + f ​(y )xx xy
′

yy
′ 2

′′ − ​

f ​y

f ​ − 2 ​f ​ + ​ f ​xx f ​y

f ​x
xy (

f ​y

f ​x )
2

yy

f(x, y) = y − x

r(x, y) = x +2 y −2 2 = 0 （円の方程式）

L(x, y,λ) = f(x, y) − λ ⋅ r(x, y) = y − x − λ(x +2 y −2 2)
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これの停留点を求めるために、以下の連立方程式を解きます：

方程式を解く

1. 

2. 

この2つから：

この関係を制約条件  に代入：

よって：

極値の判定

目的関数  の値：

結論

最大値: 

最小値: 

それぞれ、制約付きの極大・極小です。

ご希望があれば、幾何学的な図による解説も可能です（たとえば、円周上の  等高線との接点）。

極大、極小の判定をどうやったのか教えて下さい．

​ ​

⎩
⎨

⎧ ​ = −1 − λ ⋅ 2x = 0∂x
∂L

​ = 1 − λ ⋅ 2y = 0∂y
∂L

​ = −(x + y − 2) = 0∂λ
∂L 2 2

−1 − 2λx = 0 ⇒ λ = − ​2x
1

1 − 2λy = 0 ⇒ λ = ​2y
1

− ​ =
2x
1

​ ⇒
2y
1

− ​ =
x

1
​ ⇒

y

1
y = −x

x +2 y =2 2

x +2 (−x) =2 2 ⇒ 2x =2 2 ⇒ x =2 1 ⇒ x = ±1

x = 1 ⇒ y = −1

x = −1 ⇒ y = 1

f(x, y) = y − x

f(1, −1) = −1 − 1 = −2

f(−1, 1) = 1 − (−1) = 2

f(−1, 1) = 2

f(1, −1) = −2

y − x
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とても良い質問です。

今回のように ラグランジュ乗数法で候補点が有限個しか出てこない場合、極値の判定は「目的関数の値を比
較するだけ」で十分です。

背景：極大・極小の判定の意味

制約条件の下で極値を求める際、通常の（制約のない）最適化では、ヘッセ行列の正定性などを使って判定し

ます。しかし制約付き最適化では話がやや複雑になります。

ラグランジュ乗数法で得られる点は、「制約付きの停留点（候補）」にすぎないため、それが極大か極小か鞍

点かをさらに調べる必要があります。

しかし今回のように：

制約条件  が 1本の等式

候補点が 離散的に2点のみ

目的関数  の値が明確に一方が大きい、一方が小さい

という場合、関数値を比較すればそれぞれ極大値・極小値であると確定できます。

手順のまとめ

以下が今回の判定の根拠です：

1. 制約条件  を満たす点（円周）上での問題。

2. ラグランジュ乗数法により、停留点は以下の2点のみ：

3. 目的関数  の値は：

4. 値が一意的に最大・最小となるため：

 は 極大点

 は 極小点

補足：もっと一般に極値を判定したいときは？

例えば、停留点が複数あって値が同じだったり、連続的に候補がある場合には、**制約付きヘッセ行列（ラグ
ランジアンの2階微分を用いた条件付き定値性判定）**が必要になります。

その際は、次のような理論（カルーシュ＝クーン＝タッカー条件や制約付きヘッセ行列）を使いますが、今回

は単純な値比較で十分でした。

必要があれば、制約付きヘッセ行列を使った一般的な極値判定法についてもご説明できます。

r(x, y) = 0

f(x, y)

x +2 y =2 2

(x, y) = (1, −1)

(x, y) = (−1, 1)

f(x, y) = y − x

f(1, −1) = −2

f(−1, 1) = 2

(−1, 1)

(1, −1)
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ラグランジュ法による極値

制約条件 r(x,y) = x^2 + y^2 - 2 = 0 のもとで関数 f(x,y) = y - x の極値を求めてください．ただし、極値性
の判定は数学的に納得のできる方法を用いてください．

制約条件付きの極値問題をラグランジュの未定乗数法を用いて解きます。

Step 1: 問題の整理

与えられた関数と制約条件は次のとおりです：

関数:

制約条件:

Step 2: ラグランジュ関数の設定

ラグランジュ関数  を導入します：

Step 3: 偏微分方程式の解法

これらの式を整理します。

上2式から、  のとき、

これを制約条件に代入すると、

よって、

f(x, y) = y − x

r(x, y) = x +2 y −2 2 = 0

L(x, y,λ)

L(x, y,λ) = (y − x) − λ(x +2 y −2 2)

​ =
∂x
∂L

−1 − 2λx = 0 ⇒ 2λx = −1

​ =
∂y
∂L

1 − 2λy = 0 ⇒ 2λy = 1

​ =
∂λ
∂L

−(x +2 y −2 2) = 0 ⇒ x +2 y =2 2

λ = 0

y = −x

x +2 (−x) =2 2 ⇒ 2x =2 2 ⇒ x =2 1
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が得られます。

Step 4: 極値の計算

各点での関数の値を計算します：

点 :

点 :

したがって、

最小値: , 点 

最大値: , 点 

Step 5: 極値の判定

本問の制約条件は円の境界を示しており、関数  は線形です。制約条件で表された円はコン
パクトな閉集合であり、連続な関数  はこの集合上で最大・最小を必ず持ちます。

さらに、今回のラグランジュ乗数法で得られた点は円上での境界上の候補点です。他に境界での極値候補点は

存在しないため、これらの点が実際の最大・最小であることが保証されます。

より直感的に言うと、関数  は  に垂直な等高線を持つ直線関数であり、円 
 上では、円周上で直線と最も離れた点（つまり直線から見た端点）で極値が現れます。今回求まった2

点はまさにその状況に対応します。

結論:

制約条件のもとでの極値は以下の通りです：

最大値: 

最小値: 

制約条件を満たす集合がコンパクトであることを用いるのは正しいです．では、それを使わずに極値性を

示せますか？

制約条件を満たす集合がコンパクトであるという理由を使わずに、ラグランジュ未定乗数法から導出した点の

極値性を示すには、制約条件による陰関数表示を用いた一変数関数化が有効です。

Step 1: 制約条件の下でのパラメータ化

x = 1, y = −1

x = −1, y = 1

(1, −1)

f(1, −1) = (−1) − 1 = −2

(−1, 1)

f(−1, 1) = 1 − (−1) = 2

−2 (1, −1)

2 (−1, 1)

f(x, y) = y − x

f(x, y)

f(x, y) = y − x y = x x +2

y =2 2

f(−1, 1) = 2

f(1, −1) = −2
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制約条件は円ですから、円周上の点を明示的にパラメータ化できます。例えば、極座標表示を用いることが最

も簡単です：

これにより、問題は一変数関数の極値問題に還元されます。

Step 2: 一変数関数として表現

制約条件を満たした関数  をパラメータ化された関数として書くと、

となります。

Step 3: 一変数の微分と極値の特定

この一変数関数の極値は、一階微分が0になる点で現れます。微分を計算します：

この微分が0になる条件は：

この方程式を解くと：

これらのパラメータを元の座標に戻します：

 のとき、

 のとき、

これは、さきほどラグランジュの未定乗数法で求めたものと一致します。

Step 4: 極値の種類を判定（二階微分判定）

さらに、二階微分を計算すると：

この二階微分を各点で評価すると：

 での二階微分：

x = ​ cos t, y =2 ​ sin t (0 ≤2 t < 2π)

f(x, y) = y − x

f(t) = ​ sin t −2 ​ cos t =2 ​(sin t −2 cos t)

f (t) =′
​(cos t +2 sin t)

cos t + sin t = 0 ⇒ tan t = −1

t = ​, ​ (mod 2π)
4

3π
4

7π

t = ​4
3π

x = ​ cos ​ =2
4

3π
−1, y = ​ sin ​ =2

4
3π

1

t = ​4
7π

x = ​ cos ​ =2
4

7π
1, y = ​ sin ​ =2

4
7π

−1

f (t) =′′
​(− sin t +2 cos t)

t = ​4
3π

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 3/6

https://chat.openai.com/
https://pdfcrowd.com/chatgpt-to-pdf/?ref=chatgpt
https://pdfcrowd.com/api/html-to-pdf-api/?ref=chatgpt


二階微分が負であるため、この点では局所的に最大です。

 での二階微分：

二階微分が正であるため、この点では局所的に最小です。

制約条件を満たす円上で考えているため、全域での局所的最大・最小は同時に全域的な最大・最小になります

（関数は円周上周期的なため、明らかに他に同じ最大・最小値をとる別の点は存在しません）。

結論（コンパクト性を使わない場合）

パラメータ化された関数の二階微分の符号判定により、

 は 最大値 

 は 最小値 

を取ることが数学的に納得のいく形で示されました。

一変数化を用いない方法はありますか？

一変数化せず、また制約条件集合のコンパクト性にも依存しないで極値性を示すためには、制約された接ベク

トル空間とヘッセ行列に基づく二次形式を考える方法が数学的に自然で妥当です。

【方法の方針】

以下では、ラグランジュの未定乗数法を使い、さらに二次の変分によって、制約条件を満たす曲線上の変位

（接ベクトル）に制約された二次形式を評価することで極値の種類を判定します。

Step 1: ラグランジュ関数と停留点の確認

ラグランジュ関数は

偏微分が0となる条件は、さきほどの計算で得られています：

未定乗数  は各点で異なりますが、これは後述します。

f ​ =′′ (
4

3π
) ​ − ​ − ​ =2 (

2
​2

2
​2
) −2 < 0

t = ​4
7π

f ​ =′′ (
4

7π
) ​ − ​ + ​ =2 (

2
− ​2

2
​2
) 2 > 0

(−1, 1) 2

(1, −1) −2

L(x, y,λ) = (y − x) − λ(x +2 y −2 2)

(x, y) = (−1, 1), (1, −1)

λ
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Step 2: 停留点周りの二次形式の評価（制約条件を考慮した接ベクトルへ
の制限）

制約条件を満たす点では、変化の方向（ ）は制約条件の微分を満たさねばなりません。具体的には、制

約条件の勾配との直交性（接ベクトル条件）：

制約条件: 

制約条件の勾配: 

接ベクトル条件は：

Step 3: 制約条件付き二次形式の評価

ラグランジュ関数の二次形式は、ラグランジュ関数 の についてのヘッセ行列で与えられます：

よって、ヘッセ行列は

この二次形式を接ベクトル に適用すると：

ここで、接ベクトルは条件  を満たすので、この制約条件を具体的に利用します。

Step 4: 具体的に各点で評価

【点(-1,1)の場合】

接ベクトル条件: 

したがって、接ベクトルは  型になり、

二次形式は、

さて、 はこの点で以下の偏微分条件から求めます：

これを解くと、

δx, δy

r(x, y) = x +2 y −2 2 = 0

∇r(x, y) = (2x, 2y)

∇r(x, y) ⋅ (δx, δy) = 2xδx + 2yδy = 0 ⟺ xδx + yδy = 0

L (x, y)

L ​ =xx −2λ, L ​ =yy −2λ, L ​ =xy L ​ =yx 0

H ​ =L ​ ​(
−2λ

0
0

−2λ
)

(δx, δy)

(δx, δy)H ​ ​ =L (
δx

δy
) −2λ(δx +2 δy )2

xδx + yδy = 0

(−1)δx + (1)δy = 0 ⟹ δy = δx

(δx, δx)

−2λ(δx +2 δx ) =2 −4λδx2

λ

−1 − 2λx = 0, 1 − 2λy = 0, (x, y) = (−1, 1)

−1 + 2λ = 0 ⇒ λ = ​2
1
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ゆえに、この点での二次形式は、

これは負定値なので、この点は制約された状況下で局所的に最大となります。

【点(1,-1)の場合】

接ベクトル条件: 

同様に二次形式を評価すると、

この点での を同様に求めると、

したがって、二次形式は

これは正定値なので、この点は制約された状況下で局所的に最小となります。

【結論（コンパクト性、一変数化を使わない）】

以上により、

点 では制約下の接ベクトル空間に対して二次形式が負定値となり、この点は局所的最大点。

点 では二次形式が正定値となり、この点は局所的最小点。

ラグランジュ乗数法で停留点を求めたあと、制約条件に対応した接空間でヘッセ行列の二次形式の符号を判定

することで、集合のコンパクト性にも、一変数関数化にも頼らずに極値性を数学的に明快に示すことができま

した。

−4 ⋅ ​δx =
2
1 2 −2δx <2 0

(1)δx + (−1)δy = 0 ⟹ δy = δx

−2λ(δx +2 δx ) =2 −4λδx2

λ

−1 − 2λ(1) = 0 ⇒ λ = − ​

2
1

−4 ⋅ − ​ δx =(
2
1

) 2 2δx >2 0

(−1, 1)

(1, −1)
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